Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 124(12): 1889-1899, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991446

RESUMO

We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.


Assuntos
Calcificação Fisiológica , Osteogênese , Calcificação Fisiológica/fisiologia , Osso e Ossos/metabolismo , Colágeno/metabolismo , Osteoblastos/metabolismo , Durapatita
2.
Biochem Biophys Res Commun ; 580: 14-19, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607258

RESUMO

Osteoblasts in vivo form an epithelial-like layer with tight junctions between cells. Bone formation involves mineral transport into the matrix and acid transport to balance pH levels. To study the importance of the pH gradient in vitro, we used Transwell inserts composed of polyethylene terephthalate (PET) membranes with 0.4 µm pores at a density of (2 ± 0.4) x 106 pores per cm2. Mesenchymal stem cells (MSCs) prepared from murine bone marrow were used to investigate alternative conditions whereby osteoblast differentiation would better emulate in vivo bone development. MSCs were characterized by flow cytometry with more than 90% CD44 and 75% Sca-1 labeling. Mineralization was validated with paracellular alkaline phosphatase activity, collagen birefringence, and mineral deposition confirming MSCs identity. We demonstrate that MSCs cultured and differentiated on PET inserts form an epithelial-like layer while mineralizing. Measurement of the transepithelial resistance was ∼1400 Ω•cm2 at three weeks of differentiation. The pH value of the media above and under the cells were measured while cells were in proliferation and differentiation. In mineralizing cells, a difference of 0.145 pH unit was observed between the medium above and under the cells indicating a transepithelial gradient. A significant difference in pH units was observed between the medium above and below the cells in proliferation compared to differentiation. Data on pH below membranes were confirmed by pH-dependent SNARF1 fluorescence. Control cells in proliferative medium did not form an epithelial-like layer, displayed low transepithelial resistance, and there was no significant pH gradient. By transmission electron microscopy, membrane attached osteoblasts in vitro had abundant mitochondria consistent with active transport that occurs in vivo by surface osteoblasts. In keeping with osteoblastic differentiation, scanning electron microscopy identified deposition of extracellular collagen surrounded by hydroxyapatite. This in vitro model is a major advancement in modeling bone in vivo for understanding of osteoblast bone matrix production.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Animais , Calcificação Fisiológica , Proliferação de Células , Células Cultivadas , Células Epiteliais/citologia , Concentração de Íons de Hidrogênio , Membranas Artificiais , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese , Polietilenotereftalatos/química
3.
Am J Physiol Cell Physiol ; 318(1): C111-C124, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532718

RESUMO

Bone differs from other connective tissues; it is isolated by a layer of osteoblasts that are connected by tight and gap junctions. This allows bone to create dense lamellar type I collagen, control pH, mineral deposition, and regulate water content forming a compact and strong structure. New woven bone formed after degradation of mineralized cartilage is rapidly degraded and resynthesized to impart structural order for local bone strength. Ossification is regulated by thickness of bone units and by patterning via bone morphogenetic receptors including activin, other bone morphogenetic protein receptors, transforming growth factor-ß receptors, all part of a receptor superfamily. This superfamily interacts with receptors for additional signals in bone differentiation. Important features of the osteoblast environment were established using recent tools including osteoblast differentiation in vitro. Osteoblasts deposit matrix protein, over 90% type I collagen, in lamellae with orientation alternating parallel or orthogonal to the main stress axis of the bone. Into this organic matrix, mineral is deposited as hydroxyapatite. Mineral matrix matures from amorphous to crystalline hydroxyapatite. This process includes at least two-phase changes of the calcium-phosphate mineral as well as intermediates involving tropocollagen fibrils to form the bone composite. Beginning with initiation of mineral deposition, there is uncertainty regarding cardinal processes, but the driving force is not merely exceeding the calcium-phosphate solubility product. It occurs behind a epithelial-like layer of osteoblasts, which generate phosphate and remove protons liberated during calcium-phosphate salt deposition. The forming bone matrix is discontinuous from the general extracellular fluid. Required adjustment of ionic concentrations and water removal from bone matrix are important details remaining to be addressed.


Assuntos
Densidade Óssea , Matriz Óssea/metabolismo , Diferenciação Celular , Proteínas de Membrana Transportadoras/metabolismo , Osteoblastos/metabolismo , Osteogênese , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Modelos Biológicos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
4.
Am J Physiol Cell Physiol ; 315(4): C587-C597, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30044661

RESUMO

Osteoblasts secrete collagen and isolate bone matrix from extracellular space. In the matrix, alkaline phosphatase generates phosphate that combines with calcium to form mineral, liberating 8 H+ per 10 Ca+2 deposited. However, pH-dependent hydroxyapatite deposition on bone collagen had not been shown. We studied the dependency of hydroxyapatite deposition on type I collagen on pH and phosphate by surface plasmon resonance in 0-5 mM phosphate at pH 6.8-7.4. Mineral deposition saturated at <1 mM Ca2+ but was sensitive to phosphate. Mineral deposition was reversible, consistent with amorphous precipitation; stable deposition requiring EDTA removal appeared with time. At pH 6.8, little hydroxyapatite deposited on collagen; mineral accumulation increased 10-fold at pH 7.4. Previously, we showed high expression Na+/H+ exchanger (NHE) and ClC transporters in osteoblasts. We hypothesized that, in combination, these move protons across osteoblasts to the general extracellular space. We made osteoblast membrane vesicles by nitrogen cavitation and used acridine orange quenching to characterize proton transport. We found H+ transport dependent on gradients of chloride or sodium, consistent with apical osteoblast ClC family Cl-,H+ antiporters and basolateral osteoblast NHE family Na+/H+ exchangers. Little, if any, active H+ transport, supported by ATP, occurred. Major transporters include cariporide-sensitive NHE1 in basolateral membranes and ClC3 and ClC5 in apical osteoblast membranes. The mineralization inhibitor levamisole reduced bone formation and expression of alkaline phosphatase, NHE1, and ClC5. We conclude that mineral deposition in bone collagen is pH-dependent, in keeping with H+ removal by Cl-,H+ antiporters and Na+/H+-exchangers. Periodic orientation hydroxyapatite is organized on type I collagen-coiled coils.


Assuntos
Calcificação Fisiológica/genética , Canais de Cloreto/genética , Trocador 1 de Sódio-Hidrogênio/genética , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Matriz Óssea/crescimento & desenvolvimento , Matriz Óssea/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Colágeno Tipo I/química , Colágeno Tipo I/genética , Durapatita/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons/genética , Levamisol/farmacologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Fosfatos/metabolismo , Sódio/metabolismo , Ressonância de Plasmônio de Superfície , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
5.
Proc Natl Acad Sci U S A ; 112(47): E6486-95, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26604306

RESUMO

Defects in the innate immune system in the lung with attendant bacterial infections contribute to lung tissue damage, respiratory insufficiency, and ultimately death in the pathogenesis of cystic fibrosis (CF). Professional phagocytes, including alveolar macrophages (AMs), have specialized pathways that ensure efficient killing of pathogens in phagosomes. Phagosomal acidification facilitates the optimal functioning of degradative enzymes, ultimately contributing to bacterial killing. Generation of low organellar pH is primarily driven by the V-ATPases, proton pumps that use cytoplasmic ATP to load H(+) into the organelle. Critical to phagosomal acidification are various channels derived from the plasma membrane, including the anion channel cystic fibrosis transmembrane conductance regulator, which shunt the transmembrane potential generated by movement of protons. Here we show that the transient receptor potential canonical-6 (TRPC6) calcium-permeable channel in the AM also functions to shunt the transmembrane potential generated by proton pumping and is capable of restoring microbicidal function to compromised AMs in CF and enhancement of function in non-CF cells. TRPC6 channel activity is enhanced via translocation to the cell surface (and then ultimately to the phagosome during phagocytosis) in response to G-protein signaling activated by the small molecule (R)-roscovitine and its derivatives. These data show that enhancing vesicular insertion of the TRPC6 channel to the plasma membrane may represent a general mechanism for restoring phagosome activity in conditions, where it is lost or impaired.


Assuntos
Membranas Intracelulares/metabolismo , Fagossomos/metabolismo , Canais de Cátion TRPC/metabolismo , Ácidos/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diglicerídeos/metabolismo , Exocitose/efeitos dos fármacos , Imunofluorescência , Humanos , Membranas Intracelulares/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Modelos Biológicos , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Fagossomos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Purinas/química , Purinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Roscovitina , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Canal de Cátion TRPC6
6.
Bone Rep ; 21: 101763, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666049

RESUMO

Acid transport is required for bone synthesis by osteoblasts. The osteoblast basolateral surface extrudes acid by Na+/H+ exchange, but apical proton uptake is undefined. We found high expression of the Cl-/H+ exchanger ClC3 at the bone apical surface. In mammals ClC3 functions in intracellular vesicular chloride transport, but when we found Cl- dependency of H+ transport in osteoblast membranes, we queried whether ClC3 Cl-/H+ exchange functions in bone formation. We used ClC3 knockout animals, and closely-related ClC5 knockout animals: In vitro studies suggested that both ClC3 and ClC5 might support bone formation. Genotypes were confirmed by total exon sequences. Expression of ClC3, and to a lesser extent of ClC5, at osteoblast apical membranes was demonstrated by fluorescent antibody labeling and electron microscopy with nanometer gold labeling. Animals with ClC3 or ClC5 knockouts were viable. In ClC3 or ClC5 knockouts, bone formation decreased ~40 % by calcein and xylenol orange labeling in vivo. In very sensitive micro-computed tomography, ClC5 knockout reduced bone relative to wild type, consistent with effects of ClC3 knockout, but varied with specific histological parameters. Regrettably, ClC5-ClC3 double knockouts are not viable, suggesting that ClC3 or ClC5 activity are essential to life. We conclude that ClC3 has a direct role in bone formation with overlapping but probably slightly smaller effects of ClC5. The mechanism in mineral formation might include ClC H+ uptake, in contrast to ClC3 and ClC5 function in cell vesicles or other organs.

7.
J Physiol ; 591(4): 1001-15, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23165767

RESUMO

The chloride channel CLC-3 is expressed in the brain on synaptic vesicles and postsynaptic membranes. Although CLC-3 is broadly expressed throughout the brain, the CLC-3 knockout mouse shows complete, selective postnatal neurodegeneration of the hippocampus, suggesting a crucial role for the channel in maintaining normal brain function. CLC-3 channels are functionally linked to NMDA receptors in the hippocampus; NMDA receptor-dependent Ca(2+) entry, activation of Ca(2+)/calmodulin kinase II and subsequent gating of CLC-3 link the channels via a Ca(2+)-mediated feedback loop. We demonstrate that loss of CLC-3 at mature synapses increases long-term potentiation from 135 ± 4% in the wild-type slice preparation to 154 ± 7% above baseline (P < 0.001) in the knockout; therefore, the contribution of CLC-3 is to reduce synaptic potentiation by ∼40%. Using a decoy peptide representing the Ca(2+)/calmodulin kinase II phosphorylation site on CLC-3, we show that phosphorylation of CLC-3 is required for its regulatory function in long-term potentiation. CLC-3 is also expressed on synaptic vesicles; however, our data suggest functionally separable pre- and postsynaptic roles. Thus, CLC-3 confers Cl(-) sensitivity to excitatory synapses, controls the magnitude of long-term potentiation and may provide a protective limit on Ca(2+) influx.


Assuntos
Região CA1 Hipocampal/fisiologia , Canais de Cloreto/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Animais , Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Camundongos , Camundongos Knockout
8.
Nat Cell Biol ; 8(9): 933-44, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16921366

RESUMO

Acidification of phagosomes has been proposed to have a key role in the microbicidal function of phagocytes. Here, we show that in alveolar macrophages the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) participates in phagosomal pH control and has bacterial killing capacity. Alveolar macrophages from Cftr-/- mice retained the ability to phagocytose and generate an oxidative burst, but exhibited defective killing of internalized bacteria. Lysosomes from CFTR-null macrophages failed to acidify, although they retained normal fusogenic capacity with nascent phagosomes. We hypothesize that CFTR contributes to lysosomal acidification and that in its absence phagolysosomes acidify poorly, thus providing an environment conducive to bacterial replication.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Macrófagos/fisiologia , Fagocitose/fisiologia , Fagossomos/fisiologia , Pseudomonas aeruginosa/fisiologia , Animais , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Ativação do Canal Iônico , Lisossomos/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/fisiologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Viabilidade Microbiana , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Explosão Respiratória
9.
J Extracell Vesicles ; 12(2): e12305, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36775986

RESUMO

Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Estados Unidos , Vesículas Extracelulares/metabolismo , Comunicação Celular , Ácidos Nucleicos/metabolismo , Pulmão/metabolismo , Sono
10.
iScience ; 25(1): 103636, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024579

RESUMO

Acidification in intracellular organelles is tightly linked to the influx of Cl- counteracting proton translocation by the electrogenic V-ATPase. We quantified the dynamics of Cl- transfer accompanying cargo incorporation into single phagosomes in alveolar macrophages (AMs). Phagosomal Cl- concentration and acidification magnitude were followed in real time with maximal acidification achieved at levels of approximately 200 mM. Live cell confocal microscopy verified that phagosomal Cl- influx utilized predominantly the Cl- channel CFTR. Relative levels of elemental chlorine (Cl) in hard X-ray fluorescence microprobe (XFM) analysis within single phagosomes validated the increase in Cl- content. XFM revealed the complex interplay between elemental K content inside the phagosome and changes in Cl- during phagosomal particle uptake. Cl- -dependent changes in phagosomal membrane potential were obtained using second harmonic generation (SHG) microscopy. These studies provide a mechanistic insight for screening studies in drug development targeting pulmonary inflammatory disease.

11.
Commun Biol ; 5(1): 13, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013561

RESUMO

Extracellular vesicles (EVs) are cell-derived membranous structures carrying transmembrane proteins and luminal cargo. Their complex cargo requires pH stability in EVs while traversing diverse body fluids. We used a filtration-based platform to capture and stabilize EVs based on their size and studied their pH regulation at the single EV level. Dead-end filtration facilitated EV capture in the pores of an ultrathin (100 nm thick) and nanoporous silicon nitride (NPN) membrane within a custom microfluidic device. Immobilized EVs were rapidly exposed to test solution changes driven across the backside of the membrane using tangential flow without exposing the EVs to fluid shear forces. The epithelial sodium-hydrogen exchanger, NHE1, is a ubiquitous plasma membrane protein tasked with the maintenance of cytoplasmic pH at neutrality. We show that NHE1 identified on the membrane of EVs is functional in the maintenance of pH neutrality within single vesicles. This is the first mechanistic description of EV function on the single vesicle level.


Assuntos
Diagnóstico por Imagem/métodos , Vesículas Extracelulares/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Animais , Filtração , Concentração de Íons de Hidrogênio , Camundongos
12.
J Neurosci ; 30(26): 8974-83, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592218

RESUMO

The two proteases beta-secretase and gamma-secretase generate the amyloid beta peptide and are drug targets for Alzheimer's disease. Here we tested the possibility of targeting the cellular environment of beta-secretase cleavage instead of the beta-secretase enzyme itself. beta-Secretase has an acidic pH optimum and cleaves the amyloid precursor protein in the acidic endosomes. We identified two drugs, bepridil and amiodarone, that are weak bases and are in clinical use as calcium antagonists. Independently of their calcium-blocking activity, both compounds mildly raised the membrane-proximal, endosomal pH and inhibited beta-secretase cleavage at therapeutically achievable concentrations in cultured cells, in primary neurons, and in vivo in guinea pigs. This shows that an alkalinization of the cellular environment could be a novel therapeutic strategy to inhibit beta-secretase. Surprisingly, bepridil and amiodarone also modulated gamma-secretase cleavage independently of endosomal alkalinization. Thus, both compounds act as dual modulators that simultaneously target beta- and gamma-secretase through distinct molecular mechanisms. In addition to Alzheimer's disease, compounds with dual properties may also be useful for drug development targeting other membrane proteins.


Assuntos
Amiodarona/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Bepridil/farmacologia , Inibidores Enzimáticos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Amiodarona/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Bepridil/química , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Linhagem Celular , Células Cultivadas , Inibidores Enzimáticos/química , Feminino , Cobaias , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/metabolismo , Nexinas de Proteases , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
13.
J Exp Med ; 202(7): 975-86, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-16203867

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells that line the airway, gut, and exocrine glands; it is well established that CFTR plays a pivotal role in cholera toxin (CTX)-induced secretory diarrhea. Lysophosphatidic acid (LPA), a naturally occurring phospholipid present in blood and foods, has been reported to play a vital role in a variety of conditions involving gastrointestinal wound repair, apoptosis, inflammatory bowel disease, and diarrhea. Here we show, for the first time, that type 2 LPA receptors (LPA2) are expressed at the apical surface of intestinal epithelial cells, where they form a macromolecular complex with Na+/H+ exchanger regulatory factor-2 and CFTR through a PSD95/Dlg/ZO-1-based interaction. LPA inhibited CFTR-dependent iodide efflux through LPA2-mediated Gi pathway, and LPA inhibited CFTR-mediated short-circuit currents in a compartmentalized fashion. CFTR-dependent intestinal fluid secretion induced by CTX in mice was reduced substantially by LPA administration; disruption of this complex using a cell-permeant LPA2-specific peptide reversed LPA2-mediated inhibition. Thus, LPA-rich foods may represent an alternative method of treating certain forms of diarrhea.


Assuntos
Toxina da Cólera/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diarreia/tratamento farmacológico , Lisofosfolipídeos/farmacologia , Análise de Variância , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Toxina da Cólera/toxicidade , Cricetinae , AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Diarreia/induzido quimicamente , Proteína 4 Homóloga a Disks-Large , Células Epiteliais/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio , Proteína da Zônula de Oclusão-1
14.
Curr Biol ; 18(20): 1600-5, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18951024

RESUMO

Ins(3,4,5,6)P(4) inhibits plasma membrane Cl(-) flux in secretory epithelia [1]. However, in most other mammalian cells, receptor-dependent elevation of Ins(3,4,5,6)P(4) levels is an "orphan" response that lacks biological significance [2]. We set out to identify Cl(-) channel(s) and/or transporter(s) that are regulated by Ins(3,4,5,6)P4 in vivo. Several candidates [3-5] were excluded through biophysical criteria, electrophysiological analysis, and confocal immunofluorescence microscopy. Then, we heterologously expressed ClC-3 in the plasma membrane of HEK293-tsA201 cells; whole-cell patch-clamp analysis showed Ins(3,4,5,6)P4 to inhibit Cl(-) conductance through ClC-3. Next, we heterologously expressed ClC-3 in the early endosomal compartment of BHK cells; by fluorescence ratio imaging of endocytosed FITC-transferrin, we recorded intra-endosomal pH, an in situ biosensor for Cl(-) flux across endosomal membranes [6]. A cell-permeant, bioactivatable Ins(3,4,5,6)P4 analog elevated endosomal pH from 6.1 to 6.6, reflecting inhibition of ClC-3. Finally, Ins(3,4,5,6)P(4) inhibited endogenous ClC-3 conductance in postsynaptic membranes of neonatal hippocampal neurones. Among other ClC-3 functions that could be regulated by Ins(3,4,5,6)P4 are tumor cell migration [7], apoptosis [8], and inflammatory responses [9]. Ins(3,4,5,6)P4 is a ubiquitous cellular signal with diverse biological actions.


Assuntos
Canais de Cloreto/metabolismo , Fosfatos de Inositol/metabolismo , Transdução de Sinais , Animais , Células CACO-2 , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Canais de Cloreto/fisiologia , Cricetinae , Eletrofisiologia , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos
15.
Nat Cell Biol ; 4(4): 279-85, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11901421

RESUMO

Secretion of lysosomes and related organelles is important for immune system function. High-resolution membrane capacitance techniques were used to track changes in membrane area in single phagocytes during opsonized polystyrene bead uptake and release. Secretagogue stimulation of cells preloaded with beads resulted in immediate vesicle discharge, visualized as step increases in capacitance. The size of the increases were consistent with phagosome size. This hypothesis was confirmed by direct observation of dye release from bead-containing phagosomes after secretagogue stimulation. Capacitance recordings of exocytosis were correlated with quantal free radical release, as determined by amperometry. Thus, phagosomes undergo regulated secretion in macrophages, one function of which may be to deliver sequestered free radicals to the extracellular space.


Assuntos
Radicais Livres , Fagossomos/metabolismo , Proteínas de Transporte Vesicular , Animais , Linhagem Celular , DNA Complementar/metabolismo , Eletrofisiologia , Exocitose , Glutationa Transferase/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Proteínas Qa-SNARE , Quinacrina/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Superóxidos/metabolismo , Fatores de Tempo
16.
Neuron ; 52(2): 321-33, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17046694

RESUMO

It is well established that ligand-gated chloride flux across the plasma membrane modulates neuronal excitability. We find that a voltage-dependent Cl(-) conductance increases neuronal excitability in immature rodents as well, enhancing the time course of NMDA receptor-mediated miniature excitatory postsynaptic potentials (mEPSPs). This Cl(-) conductance is activated by CaMKII, is electrophysiologically identical to the CaMKII-activated CLC-3 conductance in nonneuronal cells, and is absent in clc-3(-/-) mice. Systematically decreasing [Cl(-)](i) to mimic postnatal [Cl(-)](i) regulation progressively decreases the amplitude and decay time constant of spontaneous mEPSPs. This Cl(-)-dependent change in synaptic strength is absent in clc-3(-/-) mice. Using surface biotinylation, immunohistochemistry, electron microscopy, and coimmunoprecipitation studies, we find that CLC-3 channels are localized on the plasma membrane, at postsynaptic sites, and in association with NMDA receptors. This is the first demonstration that a voltage-dependent chloride conductance modulates neuronal excitability. By increasing postsynaptic potentials in a Cl(-) dependent fashion, CLC-3 channels regulate neuronal excitability postsynaptically in immature neurons.


Assuntos
Canais de Cloreto/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Canais de Cloreto/genética , Cloretos/metabolismo , Regulação para Baixo/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Camundongos , Camundongos Knockout , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/ultraestrutura , Membranas Sinápticas/metabolismo , Sinaptossomos/metabolismo
17.
J Biol Chem ; 284(51): 35926-38, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19837664

RESUMO

Alveolar macrophages (AMs) play a major role in host defense against microbial infections in the lung. To perform this function, these cells must ingest and destroy pathogens, generally in phagosomes, as well as secrete a number of products that signal other immune cells to respond. Recently, we demonstrated that murine alveolar macrophages employ the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel as a determinant in lysosomal acidification (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933-944). Lysosomes and phagosomes in murine cftr(-/-) AMs failed to acidify, and the cells were deficient in bacterial killing compared with wild type controls. Cystic fibrosis is caused by mutations in CFTR and is characterized by chronic lung infections. The information about relationships between the CFTR genotype and the disease phenotype is scarce both on the organismal and cellular level. The most common disease-causing mutation, DeltaF508, is found in 70% of patients with cystic fibrosis. The mutant protein fails to fold properly and is targeted for proteosomal degradation. G551D, the second most common mutation, causes loss of function of the protein at the plasma membrane. In this study, we have investigated the impact of CFTR DeltaF508 and G551D on a set of core intracellular functions, including organellar acidification, granule secretion, and microbicidal activity in the AM. Utilizing primary AMs from wild type, cftr(-/-), as well as mutant mice, we show a tight correlation between CFTR genotype and levels of lysosomal acidification, bacterial killing, and agonist-induced secretory responses, all of which would be expected to contribute to a significant impact on microbial clearance in the lung.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/mortalidade , Lisossomos/metabolismo , Macrófagos Alveolares/metabolismo , Fagossomos/metabolismo , Animais , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Lisossomos/genética , Lisossomos/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Knockout , Mutação , Fagossomos/genética , Fagossomos/patologia
18.
iScience ; 23(11): 101759, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33251491

RESUMO

The relative contribution of the two phagosomal catabolic processes, oxidative and metabolic, was assessed in the killing of Pseudomonas aeruginosa in phagosomes of alveolar macrophages (AMs) from wild-type (p47-phox +/+ ) or NOX-defective (p47-phox -/- ) mice. Free radical release and degradative acidification within AM phagosomes is sequential and separable. The initial NOX activity, identifiable as a transient alkalinization, leads to fast bacterial wall permeabilization by ROS. This is followed by V-ATPase-induced acidification and enzymatic bacterial degradation contributed through phagosomal-lysosomal fusion. The alkalinization/acidification ratio was variable among phagosomes within single cells of a given genotype and not as a function of macrophage M1 or M2 classification, possibly owing to uneven distribution of phagosomal transporter proteins. Irregular, excessive NOX activity prevents phago-lysosomal fusion, and the lack of V-ATPase-induced acidification leads to bacterial stasis in the phagosome. Thus, efficient phagosomal bacterial killing is a result of tightly balanced activity between two processes.

19.
Bone ; 141: 115621, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32858255

RESUMO

Three physiologically mineralizing tissues - teeth, cartilage and bone - have critical common elements and important evolutionary relationships. Phylogenetically the most ancient densely mineralized tissue is teeth. In jawless fishes without skeletons, tooth formation included epithelial transport of phosphates, a process echoed later in bone physiology. Cartilage and mineralized cartilage are skeletal elements separate from bone, but with metabolic features common to bone. Cartilage mineralization is coordinated with high expression of tissue nonspecific alkaline phosphatase and PHOSPHO1 to harvest available phosphate esters and support mineralization of collagen secreted locally. Mineralization in true bone results from stochastic nucleation of hydroxyapatite crystals within the cross-linked collagen fibrils. Mineral accumulation in dense collagen is, at least in major part, mediated by amorphous aggregates - often called Posner clusters - of calcium and phosphate that are small enough to diffuse into collagen fibrils. Mineral accumulation in membrane vesicles is widely suggested, but does not correlate with a definitive stage of mineralization. Conversely mineral deposition at non-physiologic sites where calcium and phosphate are adequate has been shown to be regulated in large part by pyrophosphate. All of these elements are present in vertebrate bone metabolism. A key biological element of bone formation is an epithelial-like cellular organization which allows control of phosphate, calcium and pH during mineralization.


Assuntos
Osso e Ossos , Calcificação Fisiológica , Minerais , Osteogênese , Filogenia
20.
Biochim Biophys Acta ; 1773(2): 192-200, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17084917

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) undergoes rapid turnover at the plasma membrane in various cell types. The ubiquitously expressed N-WASP promotes actin polymerization and regulates endocytic trafficking of other proteins in response to signaling molecules such as Rho-GTPases. In the present study we investigated the effects of wiskostatin, an N-WASP inhibitor, on the surface expression and activity of CFTR. We demonstrate, using surface biotinylation methods, that the steady-state surface CFTR pool in stably transfected BHK cells was dramatically decreased following wiskostatin treatment with a corresponding increase in the amount of intracellular CFTR. Similar effects were observed for latrunculin B, a specific actin-disrupting reagent. Both reagents strongly inhibited macroscopic CFTR-mediated Cl(-) currents in two cell types including HT29-Cl19A colonic epithelial cells. As previously reported, CFTR internalization from the cell surface was strongly inhibited by a cyclic-AMP cocktail. This effect of cyclic-AMP was only partially blunted in the presence of wiskostatin, which raises the possibility that these two factors modulate different steps in CFTR traffic. In kinetic studies wiskostatin appeared to accelerate the initial rate of CFTR endocytosis as well as inhibit its recycling back to the cell surface over longer time periods. Our studies implicate a role for N-WASP-mediated actin polymerization in regulating CFTR surface expression and channel activity.


Assuntos
Actinas/metabolismo , Carbazóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Propanolaminas/farmacologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/antagonistas & inibidores , Animais , Biotinilação , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Membrana Celular/efeitos dos fármacos , Colo/citologia , Colo/efeitos dos fármacos , Cricetinae , AMP Cíclico/farmacologia , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células HT29 , Humanos , Cinética , Modelos Biológicos , Técnicas de Patch-Clamp , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA