Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 160(3): 477-88, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25619689

RESUMO

MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan.


Assuntos
Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Envelhecimento , Animais , Tamanho Corporal , Feminino , Longevidade , Linfoma/genética , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Transcriptoma
2.
EMBO J ; 40(9): e106048, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33764576

RESUMO

Cellular senescence is characterized by an irreversible cell cycle arrest as well as a pro-inflammatory phenotype, thought to contribute to aging and age-related diseases. Neutrophils have essential roles in inflammatory responses; however, in certain contexts their abundance is associated with a number of age-related diseases, including liver disease. The relationship between neutrophils and cellular senescence is not well understood. Here, we show that telomeres in non-immune cells are highly susceptible to oxidative damage caused by neighboring neutrophils. Neutrophils cause telomere dysfunction both in vitro and ex vivo in a ROS-dependent manner. In a mouse model of acute liver injury, depletion of neutrophils reduces telomere dysfunction and senescence. Finally, we show that senescent cells mediate the recruitment of neutrophils to the aged liver and propose that this may be a mechanism by which senescence spreads to surrounding cells. Our results suggest that interventions that counteract neutrophil-induced senescence may be beneficial during aging and age-related disease.


Assuntos
Lesão Pulmonar Aguda/imunologia , Tetracloreto de Carbono/efeitos adversos , Neutrófilos/citologia , Espécies Reativas de Oxigênio/metabolismo , Encurtamento do Telômero , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Linhagem Celular , Senescência Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Neutrófilos/metabolismo , Estresse Oxidativo , Comunicação Parácrina
4.
Nature ; 566(7742): 73-78, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728521

RESUMO

Retrotransposable elements are deleterious at many levels, and the failure of host surveillance systems for these elements can thus have negative consequences. However, the contribution of retrotransposon activity to ageing and age-associated diseases is not known. Here we show that during cellular senescence, L1 (also known as LINE-1) retrotransposable elements become transcriptionally derepressed and activate a type-I interferon (IFN-I) response. The IFN-I response is a phenotype of late senescence and contributes to the maintenance of the senescence-associated secretory phenotype. The IFN-I response is triggered by cytoplasmic L1 cDNA, and is antagonized by inhibitors of the L1 reverse transcriptase. Treatment of aged mice with the nucleoside reverse transcriptase inhibitor lamivudine downregulated IFN-I activation and age-associated inflammation (inflammaging) in several tissues. We propose that the activation of retrotransposons is an important component of sterile inflammation that is a hallmark of ageing, and that L1 reverse transcriptase is a relevant target for the treatment of age-associated disorders.


Assuntos
Senescência Celular/genética , Inflamação/genética , Interferon Tipo I/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Regulação para Baixo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/patologia , Lamivudina/farmacologia , Masculino , Camundongos , Fenótipo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Inibidores da Transcriptase Reversa/farmacologia
5.
Nucleic Acids Res ; 51(5): 2033-2045, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36744437

RESUMO

LINE-1 retrotransposons are sequences capable of copying themselves to new genomic loci via an RNA intermediate. New studies implicate LINE-1 in a range of diseases, especially in the context of aging, but without an accurate understanding of where and when LINE-1 is expressed, a full accounting of its role in health and disease is not possible. We therefore developed a method-5' scL1seq-that makes use of a widely available library preparation method (10x Genomics 5' single cell RNA-seq) to measure LINE-1 expression in tens of thousands of single cells. We recapitulated the known pattern of LINE-1 expression in tumors-present in cancer cells, absent from immune cells-and identified hitherto undescribed LINE-1 expression in human epithelial cells and mouse hippocampal neurons. In both cases, we saw a modest increase with age, supporting recent research connecting LINE-1 to age related diseases.


Assuntos
Neoplasias , Retroelementos , Humanos , Animais , Camundongos , Retroelementos/genética , Análise da Expressão Gênica de Célula Única , Elementos Nucleotídeos Longos e Dispersos/genética , Neurônios
6.
Semin Cell Dev Biol ; 90: 154-160, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30031215

RESUMO

Recent advances in genomics and imaging technologies have increased our ability to interrogate the 3D conformation of chromosomes and to better understand principles of organization and dynamics, as well as how their alteration can lead to disease. In this review we describe how these technologies have shed new light into the role of the 3D organization of the genome in defining cellular states in aging and age-associated diseases. We compare the genomic organization in cellular senescence and cancer, discuss the role of the lamina in maintaining the structural and functional integrity of the genome, and we highlight the recent findings on how this organization breaks down in disease states.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Senescência Celular/genética , Neoplasias/genética , Humanos
7.
Trends Genet ; 32(11): 751-761, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27692431

RESUMO

Cellular senescence, an irreversible growth arrest triggered by a variety of stressors, plays important roles in normal physiology and tumor suppression, but accumulation of senescent cells with age contributes to the functional decline of tissues. Senescent cells undergo dramatic alterations to their chromatin landscape that affect genome accessibility and their transcriptional program. These include the loss of DNA-nuclear lamina interactions, the distension of centromeres, and changes in chromatin composition that can lead to the activation of retrotransposons. Here we discuss these findings, as well as recent advances in microscopy and genomics that have revealed the importance of the higher-order spatial organization of the genome in defining and maintaining the senescent state.


Assuntos
Senescência Celular/genética , Cromatina/genética , Transcrição Gênica , Centrômero/genética , DNA/genética , Genômica , Heterocromatina/genética , Histonas/genética , Humanos , Lâmina Nuclear/genética
8.
Mol Reprod Dev ; 86(8): 931-934, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31199038

RESUMO

Sea urchin embryos are excellent for in vivo functional studies because of their transparency and tractability in manipulation. They are also favorites for pharmacological approaches since they develop in an aquatic environment and addition of test substances is straightforward. A concern in many pharmacological tests though is the potential for pleiotropic effects that confound the conclusions drawn from the results. Precise cellular interpretations are often not feasible because the impact of the perturbant is not known. Here we use single-cell mRNA (messenger RNA) sequencing as a metric of cell types in the embryo and to determine the selectivity of two commonly used inhibitors, one each for the Wnt and the Delta-Notch pathways, on these nascent cell types. We identified 11 distinct cell types based on mRNA profiling, and that the cell lineages affected by Wnt and Delta/Notch inhibition were distinct from each other. These data support specificity and distinct effects of these signaling pathways in the embryo and illuminate how these conserved pathways selectively regulate cell lineages at a single cell level. Overall, we conclude that single cell RNA-seq analysis in this embryo is revealing of the cell types present during development, of the changes in the gene regulatory network resulting from inhibition of various signaling pathways, and of the selectivity of these pathways in influencing developmental trajectories.


Assuntos
Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , RNA-Seq , Receptores Notch , Ouriços-do-Mar/embriologia , Transdução de Sinais , Análise de Célula Única , Animais , Embrião não Mamífero/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Ouriços-do-Mar/citologia
9.
Proc Natl Acad Sci U S A ; 113(40): 11277-11282, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621458

RESUMO

Transposable elements (TEs) are mobile genetic elements, highly enriched in heterochromatin, that constitute a large percentage of the DNA content of eukaryotic genomes. Aging in Drosophila melanogaster is characterized by loss of repressive heterochromatin structure and loss of silencing of reporter genes in constitutive heterochromatin regions. Using next-generation sequencing, we found that transcripts of many genes native to heterochromatic regions and TEs increased with age in fly heads and fat bodies. A dietary restriction regimen, known to extend life span, repressed the age-related increased expression of genes located in heterochromatin, as well as TEs. We also observed a corresponding age-associated increase in TE transposition in fly fat body cells that was delayed by dietary restriction. Furthermore, we found that manipulating genes known to affect heterochromatin structure, including overexpression of Sir2, Su(var)3-9, and Dicer-2, as well as decreased expression of Adar, mitigated age-related increases in expression of TEs. Increasing expression of either Su(var)3-9 or Dicer-2 also led to an increase in life span. Mutation of Dicer-2 led to an increase in DNA double-strand breaks. Treatment with the reverse transcriptase inhibitor 3TC resulted in decreased TE transposition as well as increased life span in TE-sensitized Dicer-2 mutants. Together, these data support the retrotransposon theory of aging, which hypothesizes that epigenetically silenced TEs become deleteriously activated as cellular defense and surveillance mechanisms break down with age. Furthermore, interventions that maintain repressive heterochromatin and preserve TE silencing may prove key to preventing damage caused by TE activation and extending healthy life span.


Assuntos
Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Longevidade/genética , Animais , Restrição Calórica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genótipo , Heterocromatina/metabolismo , Lamivudina/farmacologia , RNA Helicases/genética , RNA Helicases/metabolismo , Retroelementos/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Regulação para Cima/genética
10.
PLoS Comput Biol ; 13(6): e1005586, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28617797

RESUMO

A common problem in genomics is to test for associations between two or more genomic features, typically represented as intervals interspersed across the genome. Existing methodologies can test for significant pairwise associations between two genomic intervals; however, they cannot test for associations involving multiple sets of intervals. This limits our ability to uncover more complex, yet biologically important associations between multiple sets of genomic features. We introduce GINOM (Genomic INterval Overlap Model), a new method that enables testing of significant associations between multiple genomic features. We demonstrate GINOM's ability to identify higher-order associations with both simulated and real data. In particular, we used GINOM to explore L1 retrotransposable element insertion bias in lung cancer and found a significant pairwise association between L1 insertions and heterochromatic marks. Unlike other methods, GINOM also detected an association between L1 insertions and gene bodies marked by a facultative heterochromatic mark, which could explain the observed bias for L1 insertions towards cancer-associated genes.


Assuntos
Mapeamento Cromossômico/métodos , Genoma/genética , Modelos Estatísticos , Homologia de Sequência do Ácido Nucleico , Algoritmos , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA , Software
11.
Proc Natl Acad Sci U S A ; 112(17): 5372-6, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25870296

RESUMO

Previous research has shown that gold nanoparticles can increase the effectiveness of radiation on cancer cells. Improved radiation effectiveness would allow lower radiation doses given to patients, reducing adverse effects; alternatively, it would provide more cancer killing at current radiation doses. Damage from radiation and gold nanoparticles depends in part on the Auger effect, which is very localized; thus, it is important to place the gold nanoparticles on or in the cancer cells. In this work, we use the pH-sensitive, tumor-targeting agent, pH Low-Insertion Peptide (pHLIP), to tether 1.4-nm gold nanoparticles to cancer cells. We find that the conjugation of pHLIP to gold nanoparticles increases gold uptake in cells compared with gold nanoparticles without pHLIP, with the nanoparticles distributed mostly on the cellular membranes. We further find that gold nanoparticles conjugated to pHLIP produce a statistically significant decrease in cell survival with radiation compared with cells without gold nanoparticles and cells with gold alone. In the context of our previous findings demonstrating efficient pHLIP-mediated delivery of gold nanoparticles to tumors, the obtained results serve as a foundation for further preclinical evaluation of dose enhancement.


Assuntos
Raios gama , Ouro , Proteínas de Membrana , Nanopartículas Metálicas/química , Neoplasias , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ouro/química , Ouro/farmacologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia
12.
BMC Genomics ; 17: 463, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301971

RESUMO

BACKGROUND: Long INterspersed Element-1 (LINE-1 or L1) is the only autonomously active, transposable element in the human genome. L1 sequences comprise approximately 17 % of the human genome, but only the evolutionarily recent, human-specific subfamily is retrotransposition competent. The L1 promoter has a bidirectional orientation containing a sense promoter that drives the transcription of two proteins required for retrotransposition and an antisense promoter. The L1 antisense promoter can drive transcription of chimeric transcripts: 5' L1 antisense sequences spliced to the exons of neighboring genes. RESULTS: The impact of L1 antisense promoter activity on cellular transcriptomes is poorly understood. To investigate this, we analyzed GenBank ESTs for messenger RNAs that initiate in the L1 antisense promoter. We identified 988 putative L1 antisense chimeric transcripts, 911 of which have not been previously reported. These appear to be alternative genic transcripts, sense-oriented with respect to gene and initiating near, but typically downstream of, the gene transcriptional start site. In multiple cell lines, L1 antisense promoters display enrichment for YY1 transcription factor and histone modifications associated with active promoters. Global run-on sequencing data support the activity of the L1 antisense promoter. We independently detected 124 L1 antisense chimeric transcripts using long read Pacific Biosciences RNA-seq data. Furthermore, we validated four chimeric transcripts by quantitative RT-PCR and Sanger sequencing and demonstrated that they are readily detectable in many normal human tissues. CONCLUSIONS: We present a comprehensive characterization of human L1 antisense promoter-driven transcripts and provide substantial evidence that they are transcribed in a variety of human cell-types. Our findings reveal a new wide-reaching aspect of L1 biology by identifying antisense transcripts affecting as many as 4 % of all human genes.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Elementos Nucleotídeos Longos e Dispersos , Regiões Promotoras Genéticas , RNA Antissenso , Transcrição Gênica , Animais , Etiquetas de Sequências Expressas , Humanos , Camundongos , Retroelementos
13.
Am J Physiol Regul Integr Comp Physiol ; 309(1): R22-35, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25924882

RESUMO

The mechanistic target of rapamycin (mTOR) integrates growth factor signaling, nutrient abundance, cell growth, and proliferation. On the basis of our interest in somatic growth in the late gestation fetus, we characterized the role of mTOR in the regulation of hepatic gene expression and translation initiation in fetal and adult rats. Our strategy was to manipulate mTOR signaling in vivo and then characterize the transcriptome and translating mRNA in liver tissue. In adult rats, we used the nonproliferative growth model of refeeding after a period of fasting and the proliferative model of liver regeneration following partial hepatectomy. We also studied livers from preterm fetal rats (embryonic day 19) in which fetal hepatocytes are asynchronously proliferating. All three models employed rapamycin to inhibit mTOR signaling. Analysis of the transcriptome in fasted-refed animals showed rapamycin-mediated induction of genes associated with oxidative phosphorylation. Genes associated with RNA processing were downregulated. In liver regeneration, rapamycin induced genes associated with lysosomal metabolism, steroid metabolism, and the acute phase response. In fetal animals, rapamycin inhibited expression of genes in several functional categories that were unrelated to effects in the adult animals. Translation control showed marked fetal-adult differences. In both adult models, rapamycin inhibited the translation of genes with complex 5' untranslated regions, including those encoding ribosomal proteins. Fetal translation was resistant to the effects of rapamycin. We conclude that the mTOR pathway in liver serves distinct physiological roles in the adult and fetus, with the latter representing a condition of rapamycin resistance.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Fatores Etários , Animais , Proliferação de Células , Análise por Conglomerados , Resistência a Medicamentos , Ingestão de Alimentos , Jejum , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Idade Gestacional , Hepatectomia , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/cirurgia , Regeneração Hepática , Análise de Sequência com Séries de Oligonucleotídeos , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Mensageiro/genética , Ratos Sprague-Dawley , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transcriptoma/efeitos dos fármacos
14.
FASEB J ; 28(1): 300-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24072782

RESUMO

The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.


Assuntos
Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Proteômica , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
15.
Bioessays ; 35(12): 1035-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24129940

RESUMO

Here we present and develop the hypothesis that the derepression of endogenous retrotransposable elements (RTEs) - "genomic parasites" - is an important and hitherto under-unexplored molecular aging process that can potentially occur in most tissues. We further envision that the activation and continued presence of retrotransposition contribute to age-associated tissue degeneration and pathology. Chromatin is a complex and dynamic structure that needs to be maintained in a functional state throughout our lifetime. Studies of diverse species have revealed that chromatin undergoes extensive rearrangements during aging. Cellular senescence, an important component of mammalian aging, has recently been associated with decreased heterochromatinization of normally silenced regions of the genome. These changes lead to the expression of RTEs, culminating in their transposition. RTEs are common in all kingdoms of life, and comprise close to 50% of mammalian genomes. They are tightly controlled, as their activity is highly destabilizing and mutagenic to their resident genomes.


Assuntos
Senescência Celular/genética , Retroelementos/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Senescência Celular/fisiologia , Humanos , Retroelementos/fisiologia
16.
BMC Genomics ; 15: 583, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25012247

RESUMO

BACKGROUND: Repetitive elements comprise at least 55% of the human genome with more recent estimates as high as two-thirds. Most of these elements are retrotransposons, DNA sequences that can insert copies of themselves into new genomic locations by a "copy and paste" mechanism. These mobile genetic elements play important roles in shaping genomes during evolution, and have been implicated in the etiology of many human diseases. Despite their abundance and diversity, few studies investigated the regulation of endogenous retrotransposons at the genome-wide scale, primarily because of the technical difficulties of uniquely mapping high-throughput sequencing reads to repetitive DNA. RESULTS: Here we develop a new computational method called RepEnrich to study genome-wide transcriptional regulation of repetitive elements. We show that many of the Long Terminal Repeat retrotransposons in humans are transcriptionally active in a cell line-specific manner. Cancer cell lines display increased RNA Polymerase II binding to retrotransposons than cell lines derived from normal tissue. Consistent with increased transcriptional activity of retrotransposons in cancer cells we found significantly higher levels of L1 retrotransposon RNA expression in prostate tumors compared to normal-matched controls. CONCLUSIONS: Our results support increased transcription of retrotransposons in transformed cells, which may explain the somatic retrotransposition events recently reported in several types of cancers.


Assuntos
Elementos de DNA Transponíveis/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Humano , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA
17.
Geroscience ; 46(2): 2441-2461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37987887

RESUMO

Biological age (BA) closely depicts age-related changes at a cellular level. Type 2 diabetes mellitus (T2D) accelerates BA when calculated using clinical biomarkers, but there is a large spread in the magnitude of individuals' age acceleration in T2D suggesting additional factors contributing to BA. Additionally, it is unknown whether BA can be changed with treatment. We hypothesized that potential determinants of the heterogeneous BA distribution in T2D could be due to differential tissue aging as reflected at the DNA methylation (DNAm) level, or biological variables and their respective therapeutic treatments. Publicly available DNAm samples were obtained to calculate BA using the DNAm phenotypic age (DNAmPhenoAge) algorithm. DNAmPhenoAge showed age acceleration in T2D samples of whole blood, pancreatic islets, and liver, but not in adipose tissue or skeletal muscle. Analysis of genes associated with differentially methylated CpG sites found a significant correlation between eight individual CpG methylation sites and gene expression. Clinical biomarkers from participants in the NHANES 2017-2018 and ACCORD cohorts were used to calculate BA using the Klemera and Doubal (KDM) method. Cardiovascular and glycemic biomarkers associated with increased BA while intensive blood pressure and glycemic management reduced BA to CA levels, demonstrating that accelerated BA can be restored in the setting of T2D.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Inquéritos Nutricionais , Envelhecimento/genética , Biomarcadores/metabolismo , DNA/metabolismo
18.
Aging (Albany NY) ; 15(1): 6-20, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36622281

RESUMO

Compositional and transcriptional changes in the hematopoietic system have been used as biomarkers of immunosenescence and aging. Here, we use single-cell RNA-sequencing to study the aging peripheral blood in mice and characterize the changes in cell-type composition and transcriptional profiles associated with age. We identified 17 clusters from a total of 14,588 single cells. We detected a general upregulation of antigen processing and presentation and chemokine signaling pathways and a downregulation of genes involved in ribosome pathways with age. In old peripheral blood, we also observed an increased percentage of cells expressing senescence markers (Cdkn1a, and Cdkn2a). In addition, we detected a cluster of activated T cells exclusively found in old blood, with lower expression of Cd28 and higher expression of Bcl2 and Cdkn2a, suggesting that the cells are senescent and resistant to apoptosis.


Assuntos
Senescência Celular , Imunossenescência , Camundongos , Animais , Senescência Celular/genética , Transcriptoma , Envelhecimento/metabolismo , Perfilação da Expressão Gênica
19.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37084379

RESUMO

Retrotransposons are a class of transposable elements capable of self-replication and insertion into new genomic locations. Across species, the mobilization of retrotransposons in somatic cells has been suggested to contribute to the cell and tissue functional decline that occurs during aging. Retrotransposons are broadly expressed across cell types, and de novo insertions have been observed to correlate with tumorigenesis. However, the extent to which new retrotransposon insertions occur during normal aging and their effect on cellular and animal function remains understudied. Here, we use a single nucleus whole genome sequencing approach in Drosophila to directly test whether transposon insertions increase with age in somatic cells. Analyses of nuclei from thoraces and indirect flight muscles using a newly developed pipeline, Retrofind, revealed no significant increase in the number of transposon insertions with age. Despite this, reducing the expression of two different retrotransposons, 412 and Roo, extended lifespan, but did not alter indicators of health such as stress resistance. This suggests a key role for transposon expression and not insertion in regulating longevity. Transcriptomic analyses revealed similar changes to gene expression in 412 and Roo knockdown flies and highlighted changes to genes involved in proteolysis and immune function as potential contributors to the observed changes in longevity. Combined, our data show a clear link between retrotransposon expression and aging.


Assuntos
Drosophila , Retroelementos , Animais , Retroelementos/genética , Drosophila/genética , Drosophila melanogaster/genética , Envelhecimento/genética , Genômica
20.
Nat Aging ; 3(7): 776-790, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37400722

RESUMO

Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights. The spatial component is essential, as senescent cells communicate with neighboring cells, impacting their function and the composition of extracellular space. The Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide a comprehensive review of the existing and emerging methodologies for spatial imaging and their application toward mapping senescent cells. Moreover, we discuss the limitations and challenges inherent to each technology. We argue that the development of spatially resolved methods is essential toward the goal of attaining an atlas of senescent cells.


Assuntos
Envelhecimento , Senescência Celular , Estados Unidos , Humanos , Animais , Camundongos , Longevidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA