Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Genet ; 99(2): 298-302, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33124039

RESUMO

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.


Assuntos
Proteínas de Transporte/genética , Distrofias de Cones e Bastonetes/genética , Adulto , Estudos de Associação Genética , Humanos , Masculino , Linhagem , Repetições WD40
2.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922602

RESUMO

Mutations in GPR179 lead to autosomal recessive complete congenital stationary night blindness (cCSNB). This condition represents a signal transmission defect from the photoreceptors to the ON-bipolar cells. To confirm the phenotype, better understand the pathogenic mechanism in vivo, and provide a model for therapeutic approaches, a Gpr179 knock-out mouse model was genetically and functionally characterized. We confirmed that the insertion of a neo/lac Z cassette in intron 1 of Gpr179 disrupts the same gene. Spectral domain optical coherence tomography reveals no obvious retinal structure abnormalities. Gpr179 knock-out mice exhibit a so-called no-b-wave (nob) phenotype with severely reduced b-wave amplitudes in the electroretinogram. Optomotor tests reveal decreased optomotor responses under scotopic conditions. Consistent with the genetic disruption of Gpr179, GPR179 is absent at the dendritic tips of ON-bipolar cells. While proteins of the same signal transmission cascade (GRM6, LRIT3, and TRPM1) are correctly localized, other proteins (RGS7, RGS11, and GNB5) known to regulate GRM6 are absent at the dendritic tips of ON-bipolar cells. These results add a new model of cCSNB, which is important to better understand the role of GPR179, its implication in patients with cCSNB, and its use for the development of therapies.


Assuntos
Modelos Animais de Doenças , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Miopia/genética , Miopia/patologia , Cegueira Noturna/genética , Cegueira Noturna/patologia , Receptores Acoplados a Proteínas G/fisiologia , Retina/patologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Retina/metabolismo , Transdução de Sinais
3.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360642

RESUMO

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Assuntos
Distrofias de Cones e Bastonetes/patologia , Genes Recessivos , Proteínas Mitocondriais/genética , Mutação , Canais de Potássio/genética , Adulto , Distrofias de Cones e Bastonetes/etiologia , Distrofias de Cones e Bastonetes/metabolismo , Feminino , Humanos , Masculino , Linhagem , Fenótipo
4.
Hum Mutat ; 40(6): 765-787, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825406

RESUMO

Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.


Assuntos
Canais de Cálcio Tipo L/genética , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação , Miopia/genética , Cegueira Noturna/genética , Análise de Sequência de DNA/métodos , Predisposição Genética para Doença , Hemizigoto , Humanos , Íntrons , Masculino , Linhagem , Splicing de RNA , Mutação Silenciosa
5.
Am J Hum Genet ; 94(4): 625-33, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24680887

RESUMO

Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is a progressive inherited retinal disorder characterized by photoreceptor cell death and genetic heterogeneity. Mutations in many genes have been implicated in the pathophysiology of RCD, but several others remain to be identified. Herein, we applied whole-exome sequencing to a consanguineous family with one subject affected with RCD and identified a homozygous nonsense mutation, c.226C>T (p.Arg76(∗)), in KIZ, which encodes centrosomal protein kizuna. Subsequent Sanger sequencing of 340 unrelated individuals with sporadic and autosomal-recessive RCD identified two other subjects carrying pathogenic variants in KIZ: one with the same homozygous nonsense mutation (c.226C>T [p.Arg76(∗)]) and another with compound-heterozygous mutations c.119_122delAACT (p.Lys40Ilefs(∗)14) and c.52G>T (p.Glu18(∗)). Transcriptomic analysis in mice detected mRNA levels of the mouse ortholog (Plk1s1) in rod photoreceptors, as well as its decreased expression when photoreceptors degenerated in rd1 mice. The presence of the human KIZ transcript was confirmed by quantitative RT-PCR in the retina, the retinal pigment epithelium, fibroblasts, and whole-blood cells (highest expression was in the retina). RNA in situ hybridization demonstrated the presence of Plk1s1 mRNA in the outer nuclear layer of the mouse retina. Immunohistology revealed KIZ localization at the basal body of the cilia in human fibroblasts, thus shedding light on another ciliary protein implicated in autosomal-recessive RCD.


Assuntos
Proteínas de Ciclo Celular/genética , Exoma , Genes Recessivos , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Animais , Códon sem Sentido , Feminino , Humanos , Masculino , Camundongos , Linhagem , Transcriptoma
6.
Am J Hum Genet ; 92(1): 67-75, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23246293

RESUMO

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.


Assuntos
Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Membrana/genética , Miopia/genética , Cegueira Noturna/genética , Polimorfismo Genético , Exoma , Feminino , Humanos , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade , Mutação , Retina/química
7.
Eur J Neurosci ; 42(3): 1966-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25997951

RESUMO

Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3(nob6/nob6) )], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3(nob6/nob6) retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3(nob6/nob6) mice. LRIT3 did not co-localize with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3(nob6/nob6) mice. mGluR6, GPR179, RGS7, RGS11 and Gß5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3(nob6/nob6) mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3(nob6/nob6) mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells.


Assuntos
Proteínas de Membrana/metabolismo , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Anticorpos , Dendritos/metabolismo , Feminino , Masculino , Proteínas de Membrana/imunologia , Camundongos , Transporte Proteico , Coelhos , Receptores de Glutamato Metabotrópico/metabolismo
8.
Mol Ther Methods Clin Dev ; 22: 15-25, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34401402

RESUMO

Complete congenital stationary night blindness (cCSNB) due to mutations in TRPM1, GRM6, GPR179, NYX, or leucine-rich repeat immunoglobulin-like transmembrane domain 3 (LRIT3) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. Since the disease is non-degenerative and stable, treatment could theoretically be administrated at any time in life, making it a promising target for gene therapy. Until now, adeno-associated virus (AAV)-mediated therapies lead to significant functional improvements only in newborn cCSNB mice. Here we aimed to restore protein localization and function in adult Lrit3 -/ - mice. LRIT3 localizes in the outer plexiform layer and is crucial for TRPM1 localization at the dendritic tips of ON-BCs and the electroretinogram (ERG)-b-wave. AAV2-7m8-Lrit3 intravitreal injections were performed targeting either ON-BCs, photoreceptors (PRs), or both. Protein localization of LRIT3 and TRPM1 at the rod-to-rod BC synapse, functional rescue of scotopic responses, and ON-responses detection at the ganglion cell level were achieved in a few mice when ON-BCs alone or both PRs and ON-BCs, were targeted. More importantly, a significant number of treated adult Lrit3 -/- mice revealed an ERG b-wave recovery under scotopic conditions, improved optomotor responses, and on-time ON-responses at the ganglion cell level when PRs were targeted. Functional rescue was maintained for at least 4 months after treatment.

9.
Invest Ophthalmol Vis Sci ; 58(3): 1768-1778, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334377

RESUMO

Purpose: Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). Using a cCSNB mouse model lacking Lrit3 (nob6), we recently have shown that LRIT3 has a role in the correct localization of TRPM1 (transient receptor potential melastatin 1) to the dendritic tips of ON-bipolar cells (BCs), contacting both rod and cone photoreceptors. Furthermore, postsynaptic clustering of other mGluR6 cascade components is selectively eliminated at the dendritic tips of cone ON-BCs. The purpose of this study was to further define the role of LRIT3 in structural and functional organization of cone synapses. Methods: Exhaustive electroretinogram analysis was performed in a patient with LRIT3 mutations. Multielectrode array recordings were performed at the level of retinal ganglion cells in nob6 mice. Targeting of GluR1 and GluR5 at the dendritic tips of OFF-BCs in nob6 retinas was assessed by immunostaining and confocal microscopy. The ultrastructure of photoreceptor synapses was evaluated by electron microscopy in nob6 mice. Results: The patient with LRIT3 mutations had a selective ON-BC dysfunction with relatively preserved OFF-BC responses. In nob6 mice, complete lack of ON-pathway function with robust, yet altered signaling processing in OFF-pathways was detected. Consistent with these observations, molecules essential for the OFF-BC signaling were normally targeted to the synapse. Finally, synaptic contacts made by ON-BC but not OFF-BC neurons with the cone pedicles were disorganized without ultrastructural alterations in cone terminals, horizontal cell processes, or synaptic ribbons. Conclusions: These results suggest that LRIT3 is likely involved in coordination of the transsynaptic communication between cones and ON-BCs during synapse formation and function.


Assuntos
DNA/genética , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Membrana/genética , Mutação , Miopia/genética , Cegueira Noturna/genética , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/ultraestrutura , Animais , Análise Mutacional de DNA , Dendritos/metabolismo , Dendritos/ultraestrutura , Eletrorretinografia , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Miopia/metabolismo , Miopia/patologia , Cegueira Noturna/metabolismo , Cegueira Noturna/patologia , Células Bipolares da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Estudos Retrospectivos , Sinapses/metabolismo , Transmissão Sináptica/genética , Adulto Jovem
10.
PLoS One ; 10(5): e0127319, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26009893

RESUMO

Rod-cone dystrophy, also known as retinitis pigmentosa (RP), is the most common inherited degenerative photoreceptor disease, for which no therapy is currently available. The P23H rat is one of the most commonly used autosomal dominant RP models. It has been created by incorporation of a mutated mouse rhodopsin (Rho) transgene in the wild-type (WT) Sprague Dawley rat. Detailed genetic characterization of this transgenic animal has however never been fully reported. Here we filled this knowledge gap on P23H Line 1 rat (P23H-1) and provide additional phenotypic information applying non-invasive and state-of-the-art in vivo techniques that are relevant for preclinical therapeutic evaluations. Transgene sequence was analyzed by Sanger sequencing. Using quantitative PCR, transgene copy number was calculated and its expression measured in retinal tissue. Full field electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed at 1-, 2-, 3- and 6-months of age. Sanger sequencing revealed that P23H-1 rat carries the mutated mouse genomic Rho sequence from the promoter to the 3' UTR. Transgene copy numbers were estimated at 9 and 18 copies in the hemizygous and homozygous rats respectively. In 1-month-old hemizygous P23H-1 rats, transgene expression represented 43% of all Rho expressed alleles. ERG showed a progressive rod-cone dysfunction peaking at 6 months-of-age. SD-OCT confirmed a progressive thinning of the photoreceptor cell layer leading to the disappearance of the outer retina by 6 months with additional morphological changes in the inner retinal cell layers in hemizygous P23H-1 rats. These results provide precise genotypic information of the P23H-1 rat with additional phenotypic characterization that will serve basis for therapeutic interventions, especially for those aiming at gene editing.


Assuntos
Retinose Pigmentar/genética , Rodopsina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Visão de Cores , Modelos Animais de Doenças , Eletrorretinografia , Dosagem de Genes , Hemizigoto , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos , Retina/patologia , Rodopsina/química , Análise de Sequência de DNA , Tomografia de Coerência Óptica , Transgenes
11.
PLoS One ; 9(3): e90342, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24598786

RESUMO

Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.


Assuntos
Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Membrana/deficiência , Miopia/genética , Cegueira Noturna/genética , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Oftalmopatias Hereditárias/fisiopatologia , Movimentos Oculares , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Movimentos da Cabeça , Masculino , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Miopia/fisiopatologia , Cegueira Noturna/fisiopatologia , Retina/patologia
12.
PLoS One ; 7(7): e41992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848683

RESUMO

BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET) assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3)) production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3) production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3) production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3) production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in MCF-7 cells.


Assuntos
Insulina de Ação Prolongada/metabolismo , Insulina de Ação Prolongada/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Células HEK293 , Humanos , Insulina Glargina , Células MCF-7 , Fosfatos de Fosfatidilinositol/biossíntese , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA