Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8029): 426-432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977017

RESUMO

Highly pathogenic H5N1 avian influenza (HPAI H5N1) viruses occasionally infect, but typically do not transmit, in mammals. In the spring of 2024, an unprecedented outbreak of HPAI H5N1 in bovine herds occurred in the USA, with virus spread within and between herds, infections in poultry and cats, and spillover into humans, collectively indicating an increased public health risk1-4. Here we characterize an HPAI H5N1 virus isolated from infected cow milk in mice and ferrets. Like other HPAI H5N1 viruses, the bovine H5N1 virus spread systemically, including to the mammary glands of both species, however, this tropism was also observed for an older HPAI H5N1 virus isolate. Bovine HPAI H5N1 virus bound to sialic acids expressed in human upper airways and inefficiently transmitted to exposed ferrets (one of four exposed ferrets seroconverted without virus detection). Bovine HPAI H5N1 virus thus possesses features that may facilitate infection and transmission in mammals.


Assuntos
Furões , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Ácidos Siálicos , Animais , Furões/virologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/fisiologia , Bovinos , Camundongos , Humanos , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Feminino , Ácidos Siálicos/metabolismo , Masculino , Leite/virologia , Influenza Humana/transmissão , Influenza Humana/virologia , Influenza Humana/epidemiologia , Glândulas Mamárias Animais/virologia , Virulência , Tropismo Viral , Camundongos Endogâmicos BALB C
2.
Am J Epidemiol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885957

RESUMO

Studies of SARS-CoV-2 incidence are important for response to continued transmission and future pandemics. We followed a rural community cohort with broad age representation with active surveillance for SARS-CoV-2 identification from November 2020 through July 2022. Participants provided serum specimens at regular intervals and following SARS-CoV-2 infection or vaccination. We estimated the incidence of SARS-CoV-2 infection identified by study RT-PCR, electronic health record documentation or self-report of a positive test, or serology. We also estimated the seroprevalence of SARS-CoV-2 spike and nucleocapsid antibodies measured by ELISA. Overall, 65% of the cohort had ≥1 SARS-CoV-2 infection by July 2022, and 19% of those with primary infection were reinfected. Infection and vaccination contributed to high seroprevalence, 98% (95% CI: 95%, 99%) of participants were spike or nucleocapsid seropositive at the end of follow-up. Among those seropositive, 82% were vaccinated. Participants were more likely to be seropositive to spike than nucleocapsid following infection. Infection among seropositive individuals could be identified by increases in nucleocapsid, but not spike, ELISA optical density values. Nucleocapsid antibodies waned more quickly after infection than spike antibodies. High levels of SARS-CoV-2 population immunity, as found in this study, are leading to changing epidemiology necessitating ongoing surveillance and policy evaluation.

3.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411764

RESUMO

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Vírus de RNA/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Coronavirus/genética , Coronavirus/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Fases de Leitura Aberta , Vírus de RNA/genética , Proteína Supressora de Tumor p53/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo
4.
MMWR Morb Mortal Wkly Rep ; 72(8): 201-205, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821715

RESUMO

In the United States, 2022-23 influenza activity began earlier than usual, increasing in October 2022, and has been associated with high rates of hospitalizations among children* (1). Influenza A(H3N2) represented most influenza viruses detected and subtyped during this period, but A(H1N1)pdm09 viruses cocirculated as well. Most viruses characterized were in the same genetic subclade as and antigenically similar to the viruses included in the 2022-23 Northern Hemisphere influenza vaccine (1,2). Effectiveness of influenza vaccine varies by season, influenza virus subtype, and antigenic match with circulating viruses. This interim report used data from two concurrent studies conducted at Marshfield Clinic Health System (MCHS) in Wisconsin during October 23, 2022-February 10, 2023, to estimate influenza vaccine effectiveness (VE). Overall, VE was 54% against medically attended outpatient acute respiratory illness (ARI) associated with laboratory-confirmed influenza A among patients aged 6 months-64 years. In a community cohort of children and adolescents aged <18 years, VE was 71% against symptomatic laboratory-confirmed influenza A virus infection. These interim analyses indicate that influenza vaccination substantially reduced the risk for medically attended influenza among persons aged <65 years and for symptomatic influenza in children and adolescents. Annual influenza vaccination is the best strategy for preventing influenza and its complications. CDC recommends that health care providers continue to administer annual influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating (2).


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Adolescente , Humanos , Estados Unidos/epidemiologia , Lactente , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Wisconsin/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Eficácia de Vacinas , Vírus da Influenza B/genética , Vigilância da População , Vacinação
5.
J Infect Dis ; 226(1): 83-90, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34323977

RESUMO

BACKGROUND: Current influenza vaccines are strain specific and demonstrate low vaccine efficacy against H3N2 influenza disease, especially when vaccine is mismatched to circulating virus. The novel influenza vaccine candidate, M2-deficient single replication (M2SR), induces a broad, multi-effector immune response. METHODS: A phase 2 challenge study was conducted to assess the efficacy of an M2SR vaccine expressing hemagglutinin and neuraminidase from A/Brisbane/10/2007 (Bris2007 M2SR H3N2; clade 1). Four weeks after vaccination, recipients were challenged with antigenically distinct H3N2 virus (A/Belgium/4217/2015, clade 3C.3b) and assessed for infection and clinical symptoms. RESULTS: Adverse events after vaccination were mild and similar in frequency for placebo and M2SR recipients. A single dose of Bris2007 M2SR induced neutralizing antibody to the vaccine (48% of recipients) and challenge strain (27% of recipients). Overall, 54% of M2SR recipients were infected after challenge, compared with 71% of placebo recipients. The subset of M2SR recipients with a vaccine-induced microneutralization response against the challenge virus had reduced rates of infection after challenge (38% vs 71% of placebo recipients; P = .050) and reduced illness. CONCLUSIONS: Study participants with vaccine-induced neutralizing antibodies were protected against infection and illness after challenge with an antigenically distinct virus. This is the first demonstration of vaccine-induced protection against a highly drifted H3N2 challenge virus.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Imunidade , Vírus da Influenza A Subtipo H3N2
6.
J Infect Dis ; 225(2): 282-286, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34875072

RESUMO

In hamsters, SARS-CoV-2 infection at the same time as or before H3N2 influenza virus infection resulted in significantly reduced influenza virus titers in the lungs and nasal turbinates. This interference may be correlated with SARS-CoV-2-induced expression of MX1.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H3N2 , Proteínas de Resistência a Myxovirus/metabolismo , SARS-CoV-2 , Replicação Viral , Animais , Coinfecção , Cricetinae , Humanos , Mesocricetus
7.
J Infect Dis ; 227(1): 103-112, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36350017

RESUMO

BACKGROUND: We previously demonstrated that an intranasal dose of 108 50% tissue culture infectious dose (TCID50) M2-deficient single replication (M2SR) influenza vaccine protected against highly drifted H3N2 influenza challenge in a subset of subjects who demonstrated ≥2-fold increase in microneutralization (MN) antibodies to Belgium2015 (the challenge strain) after vaccination. Here, we describe a phase 1b, observer-blinded, dose-escalation study demonstrating an increased proportion of responders with this signal of immune protection. METHODS: Serosusceptible subjects aged 18-49 years were randomized to receive 2 doses (108-109 TCID50) of M2SR or placebo administered 28 days apart. Clinical specimens were collected before and after each dose. The primary objective was to demonstrate safety of M2SR vaccines. RESULTS: The vaccine was well tolerated at all dose levels. Against Belgium2015, ≥ 2-fold increases in MN antibodies were noted among 40% (95% confidence interval [CI], 24.9%-56.7%) of subjects following a single 108 TCID50 M2SR dose and among 80.6% (95% CI, 61.4%-92.3%) after 109 dose (P < .001). A single 109 TCID50 dose of M2SR generated ≥4-fold hemagglutination inhibition antibody seroconversion against the vaccine strain in 71% (95% CI, 52.0%-85.8%) of recipients. Mucosal and cellular immune responses were also induced. CONCLUSIONS: These results indicate that M2SR may provide substantial protection against infection with highly drifted strains of H3N2 influenza. CLINICAL TRIALS REGISTRATION: NCT03999554.


In recent years, influenza A H3N2 viruses have evolved into multiple cocirculating clades, resulting in low vaccine efficacy and highlighting the need for more effective influenza vaccines. In a previous challenge study, a single intranasal dose of the investigational vaccine M2SR demonstrated protection against a highly drifted H3N2 influenza challenge virus in a subset of vaccine recipients with a signature immune response. Increasing the dose of the M2SR vaccine in this phase1b study demonstrated a statistically significant increase in the proportion of subjects with the signature immune responses seen previously. The vaccine-induced antibodies were cross-reactive with a panel of drifted H3N2 viruses from 2007 to 2019. Additionally, M2SR generated a rise in serum hemagglutination inhibition antibody titer in 71% of subjects. In contrast, the H3N2 seroresponse rate for the licensed intranasal vaccine FluMist is 10% in seronegative adults. Moreover, M2SR elicited mucosal and cell-mediated immune responses. This study demonstrates that the intranasal M2SR generates a multifaceted immune response and has the potential to provide better efficacy against vaccine-matched strains and influenza drift variants reducing the need to update the vaccine on an annual basis. This is a noteworthy step in the development of a broadly protective influenza vaccine.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Adulto , Vírus da Influenza A Subtipo H3N2 , Anticorpos Antivirais , Vacinação , Testes de Inibição da Hemaglutinação
9.
PLoS Pathog ; 16(4): e1008409, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32287326

RESUMO

The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Doenças do Cão/virologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Zoonoses/virologia , Animais , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Doenças do Cão/transmissão , Cães , Furões , Cobaias , Humanos , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N8/classificação , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Humana/transmissão , Influenza Humana/virologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Estados Unidos , Zoonoses/transmissão
10.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801857

RESUMO

To characterize bat influenza H18N11 virus, we propagated a reverse genetics-generated H18N11 virus in Madin-Darby canine kidney subclone II cells and detected two mammal-adapting mutations in the neuraminidase (NA)-like protein (NA-F144C and NA-T342A, N2 numbering) that increased the virus titers in three mammalian cell lines (i.e., Madin-Darby canine kidney, Madin-Darby canine kidney subclone II, and human lung adenocarcinoma [Calu-3] cells). In mice, wild-type H18N11 virus replicated only in the lungs of the infected animals, whereas the NA-T342A and NA-F144C/T342A mutant viruses were detected in the nasal turbinates, in addition to the lungs. Bat influenza viruses have not been tested for their virulence or organ tropism in ferrets. We detected wild-type and single mutant viruses each possessing NA-F144C or NA-T342A in the nasal turbinates of one or several infected ferrets, respectively. A mutant virus possessing both the NA-F144C and NA-T342A mutations was isolated from both the lung and the trachea, suggesting that it has a broader organ tropism than the wild-type virus. However, none of the H18N11 viruses caused symptoms in mice or ferrets. The NA-F144C/T342A double mutation did not substantially affect virion morphology or the release of virions from cells. Collectively, our data demonstrate that the propagation of bat influenza H18N11 virus in mammalian cells can result in mammal-adapting mutations that may increase the replicative ability and/or organ tropism of the virus; overall, however, these viruses did not replicate to high titers throughout the respiratory tract of mice and ferrets.IMPORTANCE Bats are reservoirs for several severe zoonotic pathogens. The genomes of influenza A viruses of the H17N10 and H18N11 subtypes have been identified in bats, but no live virus has been isolated. The characterization of artificially generated bat influenza H18N11 virus in mammalian cell lines and animal models revealed that this virus can acquire mammal-adapting mutations that may increase its zoonotic potential; however, the wild-type and mutant viruses did not replicate to high titers in all infected animals.


Assuntos
Quirópteros/virologia , Mutação , Neuraminidase/genética , Neuraminidase/metabolismo , Orthomyxoviridae/enzimologia , Orthomyxoviridae/genética , Replicação Viral/fisiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Furões/virologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Neuraminidase/química , Orthomyxoviridae/crescimento & desenvolvimento , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Traqueia/virologia , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA