Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 8(9): e73235, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023840

RESUMO

Disruption of the ubiquitin-proteasome system, which normally identifies and degrades unwanted intracellular proteins, is thought to underlie neurodegeneration. Supporting this, mutations of Parkin, a ubiquitin ligase, are associated with autosomal recessive parkinsonism. Remarkably, Parkin can protect neurons against a wide spectrum of stress, including those that promote proteasome dysfunction. Although the mechanism underlying the preservation of proteasome function by Parkin is hitherto unclear, we have previously proposed that Parkin-mediated K63-linked ubiquitination (which is usually uncoupled from the proteasome) may serve to mitigate proteasomal stress by diverting the substrate load away from the machinery. By means of linkage-specific antibodies, we demonstrated here that proteasome inhibition indeed promotes K63-linked ubiquitination of proteins especially in Parkin-expressing cells. Importantly, we further demonstrated that the recruitment of Ubc13 (an E2 that mediates K63-linked polyubiquitin chain formation exclusively) by Parkin is selectively enhanced under conditions of proteasomal stress, thus identifying a mechanism by which Parkin could promote K63-linked ubiquitin modification in cells undergoing proteolytic stress. This mode of ubiquitination appears to facilitate the subsequent clearance of Parkin substrates via autophagy. Consistent with the proposed protective role of K63-linked ubiquitination in times of proteolytic stress, we found that Ubc13-deficient cells are significantly more susceptible to cell death induced by proteasome inhibitors compared to their wild type counterparts. Taken together, our study suggests a role for Parkin-mediated K63 ubiquitination in maintaining cellular protein homeostasis, especially during periods when the proteasome is burdened or impaired.


Assuntos
Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos
2.
Antioxid Redox Signal ; 16(9): 935-49, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21668405

RESUMO

SIGNIFICANCE: Parkinson's disease (PD) is a prevalent neurodegenerative disease affecting millions of individuals worldwide. Despite intensive efforts devoted to drug discovery, the disease remains incurable. To provide more effective medical therapy for PD, better understanding of the underlying causes of the disease is clearly necessary. RECENT ADVANCES: A broad range of studies conducted over the past few decades have collectively implicated aberrant mitochondrial homeostasis as a key contributor to the development of PD. Supporting this, mutations in several PD-linked genes are directly or indirectly linked to mitochondrial dysfunction. In particular, recent discoveries have identified parkin, whose mutations are causative of recessive parkinsonism, as a key regulator of mitochondrial homeostasis. CRITICAL ISSUES: Parkin appears to be involved in the entire spectrum of mitochondrial dynamics, including organelle biogenesis, fusion/fission, and clearance via mitophagy. How a single protein can regulate such diverse mitochondrial events is as intriguing as it is amazing; the mechanism underlying this is currently under intense research. Here, we provide an overview of mitochondrial dynamics and its relationship with neurodegenerative diseases and discuss current evidence and controversies surrounding the role of parkin in mitochondrial quality control and its relevance to PD pathogenesis. FUTURE DIRECTIONS: Although the emerging field of parkin-mediated mitochondrial quality control has proven to be exciting, it is important to recognize that PD pathogenesis is likely to involve an intricate network of interacting pathways. Elucidating the reciprocity of pathways, particularly how other PD-related pathways potentially influence mitochondrial homeostasis, may hold the key to therapeutic development.


Assuntos
Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Humanos , Mitocôndrias/genética , Doença de Parkinson/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA