Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Entropy (Basel) ; 23(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34945897

RESUMO

Individuals with subjective cognitive decline (SCD) are at high risk of developing preclinical or clinical state of Alzheimer's disease (AD). Resting state functional magnetic resonance imaging, which can indirectly reflect neuron activities by measuring the blood-oxygen-level-dependent (BOLD) signals, is promising in the early detection of SCD. This study aimed to explore whether the nonlinear complexity of BOLD signals can describe the subtle differences between SCD and normal aging, and uncover the underlying neuropsychological implications of these differences. In particular, we introduce amplitude-aware permutation entropy (AAPE) as the novel measure of brain entropy to characterize the complexity in BOLD signals in each brain region of the Brainnetome atlas. Our results demonstrate that AAPE can reflect the subtle differences between both groups, and the SCD group presented significantly decreased complexities in subregions of the superior temporal gyrus, the inferior parietal lobule, the postcentral gyrus, and the insular gyrus. Moreover, the results further reveal that lower complexity in SCD may correspond to poorer cognitive performance or even subtle cognitive impairment. Our findings demonstrated the effectiveness and sensitiveness of the novel brain entropy measured by AAPE, which may serve as the potential neuroimaging marker for exploring the subtle changes in SCD.

2.
Magn Reson Med ; 76(1): 259-69, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26193379

RESUMO

PURPOSE: Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. METHODS: Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. RESULTS: We identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional-feature-based AD classification. CONCLUSION: Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Máquina de Vetores de Suporte , Idoso , Algoritmos , Diagnóstico Diferencial , Feminino , Fractais , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Técnica de Subtração
3.
Comput Methods Programs Biomed ; 254: 108281, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924798

RESUMO

BACKGROUND AND OBJECTIVE: Accurate identification of individuals with subjective cognitive decline (SCD) is crucial for early intervention and prevention of neurodegenerative diseases. Fractal dimensionality (FD) has emerged as a robust and replicable measure, surpassing traditional geometric metrics, in characterizing the intricate fractal geometrical properties of brain structure. Nevertheless, the effectiveness of FD in identifying individuals with SCD remains largely unclear. A 3D regional FD method can be suggested to characterize and quantify the spatial complexity of the precise gray matter, providing insights into cognitive aging and aiding in the automated identification of individuals with SCD. METHODS: This study introduces a novel integer ratio based 3D box-counting fractal analysis (IRBCFA) to quantify regional fractal dimensions (FDs) in structural magnetic resonance imaging (MRI) data. The innovative method overcomes limitations of conventional box-counting techniques by accommodating arbitrary box sizes, thereby enhancing the precision of FD estimation in small, yet neurologically significant, brain regions. RESULTS: The application of IRBCFA to two publicly available datasets, OASIS-3 and ADNI, consisting of 520 and 180 subjects, respectively. The method identified discriminative regions of interest (ROIs) predominantly within the limbic system, fronto-parietal region, occipito-temporal region, and basal ganglia-thalamus region. These ROIs exhibited significant correlations with cognitive functions, including executive functioning, memory, social cognition, and sensory perception, suggesting their potential as neuroimaging markers for SCD. The identification model trained on these ROIs demonstrated exceptional performance achieving over 93 % accuracy on the discovery dataset and exceeding 87 % on the independent testing dataset. Furthermore, an exchange experiment between datasets revealed a substantial overlap in discriminative ROIs, highlighting the robustness of our method across diverse populations. CONCLUSION: Our findings indicate that IRBCFA can serve as a valuable tool for quantifying the spatial complexity of gray matter, providing insights into cognitive aging and aiding in the automated identification of individuals with SCD. The demonstrated generalizability and robustness of this method position it as a promising tool for neurodegenerative disease research and offer potential for clinical applications.


Assuntos
Disfunção Cognitiva , Fractais , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Idoso , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Substância Cinzenta/diagnóstico por imagem , Algoritmos
4.
Multimed Tools Appl ; 82(10): 15439-15456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36213341

RESUMO

During the COVID-19 pandemic, young people are using multimedia content more frequently to communicate with each other on Internet platforms. Among them, music, as psychological support for a lonely life in this special period, is a powerful tool for emotional self-regulation and getting rid of loneliness. More and more attention has been paid to the music recommender system based on emotion. In recent years, Chinese music has tended to be considered an independent genre. Chinese ancient-style music is one of the new folk music styles in Chinese music and is becoming more and more popular among young people. The complexity of Chinese-style music brings significant challenges to the quantitative calculation of music. To effectively solve the problem of emotion classification in music information search, emotion is often characterized by valence and arousal. This paper focuses on the valence and arousal classification of Chinese ancient-style music-evoked emotion. It proposes a hybrid one-dimensional convolutional neural network and bidirectional and unidirectional long short-term memory model (1D-CNN-BiLSTM). And a self-acquisition EEG dataset for Chinese college students was designed to classify music-induced emotion by valence-arousal based on EEG. In addition to that, the proposed 1D-CNN-BILSTM model verified the performance of public datasets DEAP and DREAMER, as well as the self-acquisition dataset DESC. The experimental results show that, compared with traditional LSTM and 1D-CNN-LSTM models, the proposed method has the highest accuracy in the valence classification task of music-induced emotion, reaching 94.85%, 98.41%, and 99.27%, respectively. The accuracy of the arousal classification task also gained 93.40%, 98.23%, and 99.20%, respectively. In addition, compared with the positive valence classification results of emotion, this method has obvious advantages in negative valence classification. This study provides a computational classification model for a music recommender system with emotion. It also provides some theoretical support for the brain-computer interactive (BCI) application products of Chinese ancient-style music which is popular among young people.

5.
Neuroscience ; 482: 43-52, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34914970

RESUMO

Recent studies have suggested that resting-state brain functional connectivity (RSFC) has the potential to discriminate among individuals in a population. These studies mostly utilized a pattern of RSFC obtained from one scan to identify a given individual from the set of patterns obtained from the second scan. However, it remains unclear whether the discriminative ability would change with the extension of the time span between the two brain scans. This study explores the variations in the discriminative ability of RSFC on eight time spans, including 6 hours, 12 hours, 1 day, 1 month, 3-6 months, 7-12 months, 1-2 years and 2-3 years. We first searched for a set of the most discriminative RSFCs using the data of 200 healthy adult subjects from the Human Connectome Project dataset, and we then utilized this set of RSFCs to identify individuals from a population. The variations in the discriminative accuracies over different time spans were evaluated on datasets from a total of 682 unseen adult subjects acquired from four different sites. We found that although the accuracies were detectable at above-chance levels, the discriminative accuracies showed a significant decrease (F = 17.87, p < 0.01) along with the extension of brain imaging time span, from over 90% within one month to 66% at 2-3 years. Furthermore, the decreasing trend was robust and not dependent on the training set or analysis method. Therefore, we suggest that the discriminative ability of RSFC in identifying individuals should be susceptible to the length of time between brain scans.


Assuntos
Encéfalo , Conectoma , Adulto , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Cabeça , Humanos , Imageamento por Ressonância Magnética/métodos , Descanso
6.
Front Neurosci ; 16: 1090224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36798605

RESUMO

Although recent evidence suggests that dysfunctional brain organization is associated with internet gaming disorder (IGD), the neuroanatomical alterations related to IGD remain unclear. In this diffusion tensor imaging (DTI) study, we aimed to examine alterations in white matter (WM) structural connectomes and their association with IGD characteristics in 47 young men with IGD and in 34 well-matched healthy controls. Two approaches [namely, network-based statistics (NBS) and graph theoretical measures] were applied to assess differences in the specific topological features of the networks and to identify the potential changes in the topological properties, respectively. Furthermore, we explored the association between the alterations and the severity of internet addiction. An NBS analysis revealed widespread alterations of the cortico-limbic-striatal structural connectivity networks in young people with IGD: (1) an increased subnet1 comprising the insula and the regions responsible for visual, auditory, and sensorimotor functions and (2) two decreased subnet2 and subnet3 comprising the insula, striatum, and limbic regions. Additional correlation analysis showed a significant positive association between the mean fractional anisotropy- (FA-) weighted connectivity strength of subnet1 and internet addiction test (IAT) scores in the IGD group. The present study extends our knowledge of the neuroanatomical correlates in IGD and highlights the role of the cortico-limbic-striatal network in understanding the neurobiological mechanisms underlying this disorder.

7.
Front Neurosci ; 14: 558434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33100958

RESUMO

Mild cognitive impairment (MCI) is generally regarded as a prodromal stage of Alzheimer's disease (AD). In coping with the challenges caused by AD, we analyzed resting-state functional magnetic resonance imaging data of 82 MCI subjects and 93 normal controls (NCs). The alteration of brain functional network in MCI was investigated on three scales, including global metrics, nodal characteristics, and modular properties. The results supported the existence of small worldness, hubs, and community structure in the brain functional networks of both groups. Compared with NCs, the network altered in MCI over all the three scales. In scale I, we found significantly decreased characteristic path length and increased global efficiency in MCI. Moreover, altered global network metrics were associated with cognitive level evaluated by neuropsychological assessments. In scale II, the nodal betweenness centrality of some global hubs, such as the right Crus II of cerebellar hemisphere (CERCRU2.R) and fusiform gyrus (FFG.R), changed significantly and associated with the severity and cognitive impairment in MCI. In scale III, although anatomically adjacent regions tended to be clustered into the same module regardless of group, discrepancies existed in the composition of modules in both groups, with a prominent separation of the cerebellum and a less localized organization of community structure in MCI compared with NC. Taking advantages of random forest approach, we achieved an accuracy of 91.4% to discriminate MCI patients from NCs by integrating cognitive assessments and network analysis. The importance of the used features fed into the classifier further validated the nodal characteristics of CERCRU2.R and FFG.R could be potential biomarkers in the identification of MCI. In conclusion, the present study demonstrated that the brain functional connectome data altered at the stage of MCI and could assist the automatic diagnosis of MCI patients.

8.
Front Neurosci ; 13: 96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846924

RESUMO

Background: Obsessive-compulsive disorder (OCD) and schizophrenia (SZ) as two severe mental disorders share many clinical symptoms, and have a tight association on the psychopathological level. However, the neurobiological substrates between these two diseases remain unclear. To the best of our knowledge, no study has directly compared OCD with SZ from the perspective of white matter (WM) networks. Methods: Graph theory and network-based statistic methods were applied to diffusion MRI to investigate and compare the WM topological characteristics among 29 drug-naive OCDs, 29 drug-naive SZs, and 65 demographically-matched healthy controls (NC). Results: Compared to NCs, OCDs showed the alterations of nodal efficiency and strength in orbitofrontal (OFG) and middle frontal gyrus (MFG), while SZs exhibited widely-distributed abnormalities involving the OFG, MFG, fusiform gyrus, heschl gyrus, calcarine, lingual gyrus, putamen, and thalamus, and most of these regions also showed a significant difference from OCDs. Moreover, SZs had significantly fewer connections in striatum and visual/auditory cortices than OCDs. The right putamen consistently showed significant differences between both disorders on nodal characteristics and structural connectivity. Conclusions: SZ and OCD present different level of anatomical impairment and some distinct topological patterns, and the former has more serious and more widespread disruptions. The significant differences between both disorders are observed in many regions involving the frontal, temporal, occipital, and subcortical regions. Particularly, putamen may serve as a potential imaging marker to distinguish these two disorders and may be the key difference in their pathological changes.

9.
Med Eng Phys ; 36(12): 1693-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456400

RESUMO

The second-order difference plot, as a modified Poincaré plot, is one of the important approaches for assessing the dynamics of heart rate variability. However, corresponding quantitative analysis methods are relatively limited. Based on the second-order difference plot, we propose a novel method, called the multi-scale feedback ratio analysis, which can measure the feedback properties of heart rate fluctuations on different temporal scales. The index [R(TF([τ(1), τ(2)]) is then defined to quantify the average feedback ratio through a definite scale range. Analysis of Gaussian white, 1/f and Brownian noises show that the feedback ratios are indeed on different levels. The method is then applied to heartbeat interval series derived from healthy subjects, subjects with congestive heart failure and subjects with atrial fibrillation. Results show that, for all groups, the feedback ratios vary with increasing time scales, and gradually reach relatively stable states. The R(TF)([10,20]) values of the three groups are significantly different. Thus, R(TF)([10,20]) becomes an effective parameter for distinguishing healthy and pathologic states. In addition, RTF([10,20]) for healthy, congestive failure and atrial fibrillation subjects are close to those of the 1/f, Brownian and white noises respectively, indicating different intrinsic dynamics.


Assuntos
Fibrilação Atrial/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Processamento de Sinais Assistido por Computador , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA