Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nucleic Acids Res ; 51(4): 1707-1723, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36715325

RESUMO

Cell cycle regulation is of paramount importance for all forms of life. Here, we report that a conserved and essential cell cycle-specific transcription factor (designated as aCcr1) and its viral homologs control cell division in Sulfolobales. We show that the transcription level of accr1 reaches peak during active cell division (D-phase) subsequent to the expression of CdvA, an archaea-specific cell division protein. Cells over-expressing the 58-aa-long RHH (ribbon-helix-helix) family cellular transcription factor as well as the homologs encoded by large spindle-shaped viruses Acidianus two-tailed virus (ATV) and Sulfolobus monocaudavirus 3 (SMV3) display significant growth retardation and cell division failure, manifesting as enlarged cells with multiple chromosomes. aCcr1 over-expression results in downregulation of 17 genes (>4-fold), including cdvA. A conserved motif, aCcr1-box, located between the TATA-binding box and the translation initiation site of 13 out of the 17 highly repressed genes, is critical for aCcr1 binding. The aCcr1-box is present in the promoters and 5' UTRs of cdvA genes across Sulfolobales, suggesting that aCcr1-mediated cdvA repression is an evolutionarily conserved mechanism by which archaeal cells dictate cytokinesis progression, whereas their viruses take advantage of this mechanism to manipulate the host cell cycle.


Assuntos
Sulfolobus , Fatores de Transcrição , Fatores de Transcrição/genética , Archaea , Divisão Celular , Sulfolobus/genética , Regulação da Expressão Gênica
2.
Nucleic Acids Res ; 49(13): 7628-7643, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34197611

RESUMO

Many type III CRISPR-Cas systems rely on the cyclic oligoadenylate (cOA) signaling pathway to exert immunization. However, LdCsm, a type III-A lactobacilli immune system mediates efficient plasmid clearance in spite of lacking cOA signaling. Thus, the system provides a good model for detailed characterization of the RNA-activated DNase in vitro and in vivo. We found ATP functions as a ligand to enhance the LdCsm ssDNase, and the ATP enhancement is essential for in vivo plasmid clearance. In vitro assays demonstrated LdCsm cleaved transcriptional bubbles at any positions in non-template strand, suggesting that DNA cleavage may occur for transcribing DNA. Destiny of target plasmid versus nontarget plasmid in Escherichia coli cells was investigated, and this revealed that the LdCsm effectors mediated co-transcriptional DNA cleavage to both target and nontarget plasmids, suggesting LdCsm effectors can mediate DNA cleavage to any transcriptional bubbles in close proximity upon activation. Subcellular locations of active LdCsm effectors were then manipulated by differential expression of LdCsm and CTR, and the data supported the hypothesis. Strikingly, stepwise induction experiments indicated allowing diffusion of LdCsm effector led to massive chromosomal DNA degradation, suggesting this unique IIIA system can facilitate infection abortion to eliminate virus-infected cells.


Assuntos
Sistemas CRISPR-Cas , Desoxirribonucleases/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Clivagem do DNA , DNA de Cadeia Simples/metabolismo , Ligantes , Plasmídeos/metabolismo , RNA/análise
3.
Nucleic Acids Res ; 46(13): 6627-6641, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29846688

RESUMO

PINA is a novel ATPase and DNA helicase highly conserved in Archaea, the third domain of life. The PINA from Sulfolobus islandicus (SisPINA) forms a hexameric ring in crystal and solution. The protein is able to promote Holliday junction (HJ) migration and physically and functionally interacts with Hjc, the HJ specific endonuclease. Here, we show that SisPINA has direct physical interaction with Hjm (Hel308a), a helicase presumably targeting replication forks. In vitro biochemical analysis revealed that Hjm, Hjc, and SisPINA are able to coordinate HJ migration and cleavage in a concerted way. Deletion of the carboxyl 13 amino acid residues impaired the interaction between SisPINA and Hjm. Crystal structure analysis showed that the carboxyl 70 amino acid residues fold into a type II KH domain which, in other proteins, functions in binding RNA or ssDNA. The KH domain not only mediates the interactions of PINA with Hjm and Hjc but also regulates the hexameric assembly of PINA. Our results collectively suggest that SisPINA, Hjm and Hjc work together to function in replication fork regression, HJ formation and HJ cleavage.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , DNA Cruciforme/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Sulfolobus/enzimologia
4.
Appl Environ Microbiol ; 85(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420341

RESUMO

Lonely Guy (LOG) proteins are important enzymes in cellular organisms, which catalyze the final step in the production of biologically active cytokinins via dephosphoribosylation. LOG proteins are vital enzymes in plants for the activation of cytokinin precursors, which is crucial for plant growth and development. In fungi and bacteria, LOGs are implicated in pathogenic or nonpathogenic interactions with their plant hosts. However, LOGs have also been identified in the human pathogen Mycobacterium tuberculosis, and the accumulation of cytokinin-degraded products, aldehydes, within bacterial cells is lethal to the bacterium in the presence of nitric oxide, suggesting diverse roles of LOGs in various species. In this study, we conducted biochemical and genetic analysis of a LOG homologue, SiRe_0427, from the hyperthermophilic archaeon Sulfolobus islandicus REY15A. The protein possessed the LOG motif GGGxGTxxE and exhibited phosphoribohydrolase activity on adenosine-5-monophosphate (AMP), similar to LOGs from eukaryotes and bacteria. Alanine mutants at either catalytic residues or substrate binding sites lost their activity, resembling other known LOGs. SiRe_0427 is probably a homotetramer, as revealed by size exclusion chromatography and chemical cross-linking. We found that the gene encoding SiRe_0427 could be knocked out; however, the Δsire_0427 strain exhibited no apparent difference in growth compared to the wild type, nor did it show any difference in sensitivity to UV irradiation under our laboratory growth conditions. Overall, these findings indicate that archaeal LOG homologue is active as a phosphoribohydrolase.IMPORTANCE Lonely Guy (LOG) is an essential enzyme for the final biosynthesis of cytokinins, which regulate almost every aspect of growth and development in plants. LOG protein was originally discovered 12 years ago in a strain of Oryza sativa with a distinct floral phenotype of a single stamen. Recently, the presence of LOG homologues has been reported in Mycobacterium tuberculosis, an obligate human pathogen. To date, active LOG proteins have been reported in plants, pathogenic and nonpathogenic fungi, and bacteria, but there have been no experimental reports of LOG protein from archaea. In the current work, we report the identification of a LOG homologue active on AMP from Sulfolobus islandicus REY15A, a thermophilic archaeon. The protein likely forms a tetramer in solution and represents a novel evolutionary lineage. The results presented here expand our knowledge regarding proteins with phosphoribohydrolase activities and open an avenue for studying signal transduction networks of archaea and potential applications of LOG enzymes in agriculture and industry.


Assuntos
Proteínas Arqueais/genética , Sulfolobus/fisiologia , Proteínas Arqueais/metabolismo , Fenótipo , Transdução de Sinais , Sulfolobus/genética
5.
Mol Microbiol ; 105(4): 540-553, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28557139

RESUMO

The archaea Sulfolobus utilizes the ESCRT-III-based machinery for cell division. This machinery comprises three proteins: CdvA, Eukaryotic-like ESCRT-III and Vps4. In addition to ESCRT-III, Sulfolobus cells also encode three other ESCRT-III homologs termed ESCRT-III-1, -2 and -3. Herein, we show that ESCRT-III-1 and -2 in S. islandicus REY15A are localized at midcell between segregating chromosomes, indicating that both are involved in cell division. Genetic analysis reveals that escrt-III-2 is indispensable for cell viability and cells with reduced overall level of ESCRT-III-1 exhibit growth retardation and cytokinesis defect with chain-like cell morphology. In contrast, escrt-III-3 is dispensable for cell division. We show that S. islandicus REY15A cells generate buds when infected with S. tengchongensis spindle shaped-virus 2 (STSV2) or when ESCRT-III-3 is over-expressed. Interestingly, Δescrt-III-3 cells infected with STSV2 do not produce buds. These results suggest that ESCRT-III-3 plays an important role in budding. In addition, cells over-expressing the C-terminal truncated mutants of ESCRT-III, ESCRT-III-1 and ESCRT-III-2 are maintained predominantly at the early, late, and membrane abscission stages of cell division respectively, suggesting a crucial role of the ESCRTs at different stages of membrane ingression. Intriguingly, intercellular bridge and midbody-like structures are observed in cells over-expressing MIM2-truncated mutant of ESCRT-III-2.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Sulfolobus/genética , Sequência de Aminoácidos , Divisão Celular , Segregação de Cromossomos , Citocinese/fisiologia , Endossomos/metabolismo , Endossomos/fisiologia , Ligação Proteica/fisiologia , Transporte Proteico , Sulfolobus/metabolismo
6.
Protein Expr Purif ; 143: 52-56, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29050984

RESUMO

The sweet protein monellin has high sweet potency with limited stability. In this study, 3 double-sites mutants (E2N/E23A, E2N/Y65R and E23A/Y65R) of the single-chain monellin (MNEI) were constructed. The proteins were expressed in E. coli BL21 and purified to homogeneity by nickel affinity chromatography with yields above 10 mg/L cell culture. Introduction of a sweeter mutant E2N into E23A or Y65R (E2N/E23A and E2N/Y65R) led to about 3-fold increase of sweetness, while addition of a more stable mutant E23A into E2N or Y65R (E2N/E23A and E23A/Y65R) resulted in improved thermal stability (about 10 °C). The results indicate that residues E2 and E23 mediate the sweetness and thermal stability of the protein, respectively. Multiple mutations of different residues (E2N/E23A) led to an additive performance with both improved sweetness and stability, suggesting that the sweetness and stability could be modulated by the independent molecular mechanism. The sweeter and thermal stable variant has a potential in further industrial applications.


Assuntos
Mutação/genética , Proteínas de Plantas/química , Proteínas Recombinantes/química , Edulcorantes/química , Escherichia coli/genética , Temperatura Alta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Edulcorantes/metabolismo
7.
Antonie Van Leeuwenhoek ; 111(3): 471-478, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29090357

RESUMO

To investigate the symbiotic roles of the gut microbiota in the fungus-growing termite Macrotermes barneyi, a novel strain with chitinolytic and cellulolytic activity, designated strain an-chi-1T, was isolated from the hindgut of M. barneyi. Strain an-chi-1T grows optimally at 28-30 °C, pH 8.0 in PYG medium. On the basis of 16S rRNA gene sequence analysis, this isolate belongs to the genus Cellulomonas with high sequence similarity to Cellulomonas iranensis (99.4%), followed by Cellulomonas flavigena (98.4%), Cellulomonas phragmiteti (97.4%), Cellulomonas oligotrophica (97.2%) and Cellulomonas terrae (97.0%). The DNA-DNA relatedness between an-chi-1T and the type strains of C. iranensis and C. flavigena DSM20109T are 35.4% and 23.7%, respectively. The major cellular fatty acids are anteiso-C15:0 and C14:0. The polar lipid profile consists of diphosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol dimannosides and one unidentified phospholipid. The cell-wall sugar is ribose. The peptidoglycan contains glutamic acid, aspartic acid and alanine. The DNA G+C content is 67.3 mol%. Based on its distinctive phenotypic, phylogenetic, and chemotaxonomic characteristics, an-chi-1T represents a novel species of the genus Cellulomonas, for which the name Cellulomonas macrotermitis sp. nov. is proposed. The type strain is an-chi-1T (= JCM 31923T = CICC 24195T).


Assuntos
Cellulomonas/classificação , Microbioma Gastrointestinal , Isópteros/microbiologia , Animais , Cellulomonas/química , Cellulomonas/genética , Cellulomonas/isolamento & purificação , Metabolômica/métodos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Biochem Biophys Res Commun ; 490(3): 774-779, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28647366

RESUMO

AP endonuclease recognizes and cleaves apurinic/apyrimidinic (AP) sites and plays a critical role in base excision repair. Many ExoIII and EndoIV family AP endonucleases have been characterized both biochemically and structurally in Eukaryote and Bacteria. However, relatively fewer have been studied in Euryarchaeota and there is no such report on an AP endonuclease from Crenarchaeota. Here we report, for the first time, the crystal structure of a crenarchaeal ExoIII AP endonuclease, SisExoIII, from Sulfolobus islandicus REY15A. SisExoIII comprises a two-layer core formed by 10 ß-sheets and a shell formed by 9 surrounding α-helices. A disulfide bond connecting ß8 and ß9 is formed by Cys142 and Cys215. This intra-molecular linkage is conserved among crenarchaeal ExoIII homologs and site-directed mutagenesis revealed that it endows the protein with thermostability, however, disruption of the disulfide bond only has a slight effect on the AP endonuclease activity. We also observed that several key residues within the catalytic center including conserved Glu35 and Asn9 show different conformation compared with known ExoIII proteins and form various intra-molecular salt bridges. The protein possesses three putative DNA binding loops with higher flexibility and hydrophobicity than those of ExoIIIs from other organisms. These features may result in low AP endonuclease activity and defect of exonuclease activity of SisExoIII. The study has deepened our understanding in the structural basis of crenarchaeal ExoIII catalysis and clarified a role of the disulfide bond in maintaining protein thermostability.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Exodesoxirribonucleases/química , Sulfolobus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Estabilidade Enzimática , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Sulfolobus/química , Temperatura
9.
Int J Syst Evol Microbiol ; 67(9): 3440-3445, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28857029

RESUMO

A Gram-stain-negative, non-motile, strictly aerobic bacterium designated BW11-2T was isolated from marine sediment of the south-west Indian Ocean. Cells of BW11-2T were rod-shaped, endospore-forming, 0.3-0.5 µm wide, 1.8-2.0 µm long, catalase-positive and oxidase-negative. The isolate was capable of growing at 15-45 °C (optimum 30 °C), pH 5-9 (optimum 7) and with 0.5-10 % (w/v) NaCl (optimum 3 %). Based on 16S rRNA gene sequence similarities, BW11-2T was shown to belong to the family Bacillaceae within the phylum Firmicutes and formed a distinct lineage, showing the highest sequence similarities to closely related genera: Bacillus(93.9-94.7 %), Gracilibacillus (93.3-93.7 %), Amphibacillus (93.5 %), Virgibacillus (92.9-93.1 %) and Anaerobacillus(92.6-93.0 %). BW11-2T shared the highest 16S rRNA gene sequence similarity with the species Bacillus oleronius (94.7 %). The predominant fatty acids (>10 %) were anteiso-C15 : 0 and iso-C15 : 0. The major quinone was menaquinone-7 (MK-7). Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and one unidentified aminolipid. The genomic DNA G+C content of strain BW11-2T was 43.3 mol%. On the basis of the morphological and chemotaxonomic characteristics as well as genotypic data, strain BW11-2T represents a novel genus and species in the family Bacillaceae, for which the name Swionibacillus sediminis gen. nov., sp. nov. is proposed. Strain BW11-2T (=CICC 24196T=JCM 31924T) is the type strain.


Assuntos
Bacillaceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Oceano Índico , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Extremophiles ; 20(5): 785-93, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27457080

RESUMO

AP endonuclease cleaves the phosphodiester bond 5'- to the AP (apurinic or apyrimidinic) sites and is one of the major enzymes involved in base excision repair. So far, the properties of several archaeal AP endonuclease homologues have been characterized in vitro, but little is known about their functions in vivo. Herein, we report on the biochemical and genetic analysis of two AP endonucleases, SisExoIII and SisEndoIV, from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A. Both SisExoIII and SisEndoIV exhibit AP endonuclease activity, but neither of them has 3'-5' exonuclease activity. SisExoIII and SisEndoIV have similar K M values on the substrate containing an AP site, but the latter cleaves the AP substrate at a dramatically higher catalytic rate than the former. Unlike other AP endonucleases identified in archaea, SisExoIII and SisEndoIV do not exhibit any cleavage activity on DNA having oxidative damage (8-oxo-dG) or uracil. Genetic analysis revealed that neither gene is essential for cell viability, and the growth of ∆SiRe_2666 (endoIV), ∆SiRe_0100 (exoIII), and ∆SiRe_0100∆SiRe_2666 is not affected under normal growth conditions. However, ∆SiRe_2666 exhibits higher sensitivity to the alkylating agent methyl methanesulfonate (MMS) than ∆SiRe_0100. Over-expression of SiRe_0100 can partially complement the sensitivity of ∆SiRe_2666 to MMS, suggesting a backup role of SisExoIII in AP site processing in vivo. Intriguingly, over-expression of SisEndoIV renders the strain more sensitive to MMS than the control. Taken together, we conclude that SisEndoIV, but not SisExoIII, is the main AP endonuclease that participates directly in base excision repair in S. islandicus.


Assuntos
Proteínas Arqueais/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Sulfolobus/enzimologia , 8-Hidroxi-2'-Desoxiguanosina , Proteínas Arqueais/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Genes Arqueais , Sulfolobus/genética , Uracila/metabolismo
11.
Extremophiles ; 20(4): 537-46, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27290726

RESUMO

DExD/H-box helicases represent the largest family of helicases. They belong to superfamily 2 helicases and participate in nucleotide metabolism, ribosome biogenesis, and nucleocytoplasmic transport. The biochemical properties and structures of some DExD/H-box helicases in the archaea have been documented, but many of them have not been characterized; and reports on in vivo functional analyses are limited. In this study, we attempted gene knockout of 8 putative DExD/H-box helicases in Sulfolobus islandicus REY15A and obtained two deletion mutants, SiRe_0681 and SiRe_1605. We determined that ΔSiRe_0681 grew faster than wild type cells in the presence of methyl methanesulfonate (MMS). Flow cytometry analysis showed that this strain had fewer G1/S phase cells than the wild type, and the genes coding for cell division proteins were up-regulated. The stain ΔSiRe_1605 was more sensitive to MMS than the wild type cell, and many nucleotide metabolism and DNA repair enzymes were found to be down-regulated. Intriguingly, deletion of either gene led to silencing simultaneously of over 80 genes located at a specific region. This study provides a novel insight into the in vivo functions of predicted DExD/H-box family helicases in the archaea.


Assuntos
Proteínas Arqueais/genética , DNA Helicases/genética , Deleção de Genes , Sulfolobus/enzimologia , Proteínas Arqueais/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Fase G1 , Sulfolobus/genética , Sulfolobus/crescimento & desenvolvimento
12.
BMC Mol Biol ; 16: 2, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25880130

RESUMO

BACKGROUND: ATPase/Helicases and nucleases play important roles in homologous recombination repair (HRR). Many of the mechanistic details relating to these enzymes and their function in this fundamental and complicated DNA repair process remain poorly understood in archaea. Here we employed Sulfolobus islandicus, a hyperthermophilic archaeon, as a model to investigate the in vivo functions of the ATPase/helicase HerA, the nuclease NurA, and their associated proteins Mre11 and Rad50. RESULTS: We revealed that each of the four genes in the same operon, mre11, rad50, herA, and nurA, are essential for cell viability by a mutant propagation assay. A genetic complementation assay with mutant proteins was combined with biochemical characterization demonstrating that the ATPase activity of HerA, the interaction between HerA and NurA, and the efficient 5'-3' DNA end resection activity of the HerA-NurA complex are essential for cell viability. NurA and two other putative HRR proteins: a PIN (PilT N-terminal)-domain containing ATPase and the Holliday junction resolvase Hjc, were co-purified with a chromosomally encoded N-His-HerA in vivo. The interactions of HerA with the ATPase and Hjc were further confirmed by in vitro pull down. CONCLUSION: Efficient 5'-3' DNA end resection activity of the HerA-NurA complex contributes to necessity of HerA and NurA in Sulfolobus, which is crucial to yield a 3'-overhang in HRR. HerA may have additional binding partners in cells besides NurA.


Assuntos
DNA Helicases/metabolismo , Desoxirribonucleases/metabolismo , Genes Essenciais , Sulfolobus/crescimento & desenvolvimento , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , DNA Helicases/genética , DNA Arqueal/metabolismo , Desoxirribonucleases/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Óperon , Reparo de DNA por Recombinação , Sulfolobus/enzimologia , Sulfolobus/genética
13.
Extremophiles ; 19(2): 505-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25644236

RESUMO

The in vivo functions of Hje and Hjc, two Holliday junction resolvases in Sulfolobus islandicus were investigated. We found that deletion of either hje or hjc had no effect on normal cell growth, while deletion of both hje and hjc is lethal. Although Hjc is the conserved resolvase in all archaea, the hje deletion rather than hjc deletion rendered cells more sensitive to DNA-damaging agents such as hydroxyurea, cisplatin, and methyl methanesulfonate than the wild type (WT). Intriguingly, the sensitivity of Δhje could not be rescued by ectopic expression of Hje from a plasmid and Hje overexpression slowed growth and large cells appeared with more than two genome equivalents. We showed that Hje was maintained at a low level in WT cells. Furthermore, transcriptomic microarray analysis revealed that the abundance of transcripts of many genes including those involved in DNA replication, repair, transcription regulation, and cell division changed drastically in the Hje-overexpressed strain. However, only limited genes were up- or downregulated in the hje deletion strain. Our findings collectively suggest that Hje is the primary resolvase involved in DNA repair and its expression must be tightly controlled in cells.


Assuntos
Proteínas Arqueais/genética , Resolvases de Junção Holliday/genética , Sulfolobus/enzimologia , Proteínas Arqueais/metabolismo , Deleção de Genes , Resolvases de Junção Holliday/metabolismo , Sulfolobus/genética , Sulfolobus/metabolismo
14.
Int J Syst Evol Microbiol ; 64(Pt 9): 2956-2961, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24899656

RESUMO

A Gram-stain-negative, facultatively anaerobic, non-motile and coccoid- to short-rod-shaped bacterium, designated strain Dys-CH1(T), was isolated from the hindgut of a fungus-growing termite Macrotermes barneyi. The optimal pH and cultivation temperature of strain Dys-CH1(T) were pH 7.2-7.6 and 35-37 °C, respectively. Sequence analysis of 16S rRNA gene showed that Dys-CH1(T) shared 94.6 % and 90.9 % similarity with Dysgonomonas capnocytophagoides JCM 16697(T) and Dysgonomonas gadei CCUG 42882(T), respectively. Strain Dys-CH1(T) was found to be different from other species of the genus Dysgonomonas with validly published names with respect to taxonomically important traits, including habitat, biochemical tests, DNA G+C content, bile resistance, fatty-acid composition and susceptibility to antimicrobial agents. On the basis of these characteristics, strain Dys-CH1(T) represents a novel species of the genus Dysgonomonas for which the name Dysgonomonas macrotermitis sp. nov. is proposed. The type strain is Dys-CH1(T) ( = JCM 19375(T) = DSM 27370(T)).


Assuntos
Bacteroidetes/classificação , Isópteros/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Sistema Digestório/microbiologia , Ácidos Graxos/química , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Arch Insect Biochem Physiol ; 86(3): 151-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24719302

RESUMO

Major ß-glucosidase (BG) and endo-ß-1,4-glucanase (EG) activities were localized to the midgut of the fungus-growing termite Macrotermes barneyi. Previously, we obtained the endogenous BG gene (MbmgBG1) from the midgut of M. barneyi. Here, we report the cDNA cloning of another endogenous cellulase, the EG protein MbEG1. This cellulase was partially purified from crude extract of the midgut of worker termites using zymogram analysis. Based on the N-terminal amino acid sequence and using rapid amplification of cDNA ends (RACE), a full-length cDNA of 1,843 base pairs was obtained. This encoded 448 amino acids and the sequence was similar to that of the members of glycoside hydrolase family 9. The MbEG1 transcript was detected primarily in the midgut using quantitative real-time polymerase chain reaction (PCR). To confirm functional activity of MbEG1, heterologous expression was conducted in both Escherichia coli and Pichia pastoris expression systems. Results indicated that MbEG1 could be functionally expressed in P. pastoris. This study provides the information that may facilitate understanding of cellulolytic systems in fungus-growing termites.


Assuntos
Celulase/genética , Proteínas de Insetos/genética , Isópteros/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Celulase/metabolismo , Celulases/metabolismo , Clonagem Molecular , DNA Complementar , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/metabolismo , Proteínas de Insetos/metabolismo , Isópteros/enzimologia , Isópteros/microbiologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Análise de Sequência de Proteína
16.
J Biomol Struct Dyn ; 42(3): 1126-1144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37096792

RESUMO

Pseudomonas aeruginosa, the most common opportunistic pathogen, is becoming antibiotic-resistant worldwide. The fate of P. aeruginosa, a multidrug-resistant strain, can be determined by multidrug efflux pumps, enzyme synthesis, outer membrane protein depletion, and target alterations. Microbial niches have long used quorum sensing (QS) to synchronize virulence gene expression. Computational methods can aid in the development of novel P. aeruginosa drug-resistant treatments. The tripartite symbiosis in termites that grow fungus may help special microbes find new antimicrobial drugs. To find anti-quorum sensing natural products that could be used as alternative therapies, a library of 376 fungal-growing termite-associated natural products (NPs) was screened for their physicochemical properties, pharmacokinetics, and drug-likeness. Using GOLD, the top 74 NPs were docked to the QS transcriptional regulator LasR protein. The five lead NPs with the highest gold score and drug-like properties were chosen for a 200-ns molecular dynamics simulation to test the competitive activity of different compounds against negative catechin. Fridamycin and Daidzein had stable conformations, with mean RMSDs of 2.48 and 3.67 Å, respectively, which were similar to Catechin's 3.22 Å. Fridamycin and Daidzein had absolute binding energies of -71.186 and -52.013 kcal/mol, respectively, which were higher than the control's -42.75 kcal/mol. All the compounds within the active site of the LasR protein were kept intact by Trp54, Arg55, Asp67, and Ser123. These findings indicate that termite gut and fungus-associated NPs, specifically Fridamycin and Daidzein, are potent QS antagonists that can be used to treat P. aeruginosa's multidrug resistance.Communicated by Ramaswamy H. Sarma.


Assuntos
Catequina , Isópteros , Animais , Percepção de Quorum , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa/genética , Isópteros/metabolismo , Simulação de Dinâmica Molecular , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Catequina/farmacologia , Proteínas de Bactérias/química , Fungos , Antibacterianos/farmacologia
17.
Front Mol Biosci ; 10: 1183073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152898

RESUMO

Multidrug-resistant Acinetobacter baumannii infections have become a major public health concern globally. Inhibition of its essential MurF protein has been proposed as a potential target for broad-spectrum drugs. This study aimed to evaluate the potential of a novel ecological niche of 374 fungus-growing termite associated Natural Products (NPs). The molecular docking and computational pharmacokinetics screened four compounds, i.e., Termstrin B, Fridamycin A, Maduralactomycin A, and Natalenamide C, as potential compounds that have higher binding affinities and favourable protein-ligand interactions. The compound Maduralactomycin A induced more stability based on its lowest average RMSD value (2.31 Å) and low standard deviation (0.35) supported by the consistent flexibility and ß-factor during the protein's time-dependent motion. While hydrogen bond analysis indicated that Termstrin B has formed the strongest intra-protein interaction, solvent accessibility was in good agreement with Maduralactomycin A compactness. Maduralactomycin A has the strongest binding energy among all the compounds (-348.48 kcal/mol) followed by Termstrin B (-321.19 kcal/mol). Since these findings suggest Maduralactomycin A and Termstrin B as promising candidates for inhibition of MurF protein, the favourable binding energies of Maduralactomycin A make it a more important compound to warrant further investigation. However, experimental validation using animal models and clinical trials is recommended before reaching any final conclusions.

18.
mBio ; 14(4): e0094223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37389462

RESUMO

Forkhead-associated (FHA) domain proteins specifically recognize phosphorylated threonine via the FHA domain and are involved in signal transduction in various processes especially DNA damage response (DDR) and cell cycle regulation in eukaryotes. Although FHA domain proteins are found in prokaryotes, archaea, and bacteria, their functions are far less clear as compared to the eukaryotic counterparts, and it has not been studied whether archaeal FHA proteins play a role in DDR. Here, we have characterized an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) by genetic, biochemical, and transcriptomic approaches. We find that ΔSisarnA exhibits higher resistance to DNA damage agent 4-nitroquinoline 1-oxide (NQO). The transcription of ups genes, encoding the proteins for pili-mediated cell aggregation and cell survival after DDR, is elevated in ΔSisarnA. The interactions of SisArnA with two predicted partners, SisvWA1 (SisArnB) and SisvWA2 (designated as SisArnE), were enhanced by phosphorylation in vitro. ΔSisarnB displays higher resistance to NQO than the wild type. In addition, the interaction between SisArnA and SisArnB, which is reduced in the NQO-treated cells, is indispensable for DNA binding in vitro. These indicate that SisArnA and SisArnB work together to inhibit the expression of ups genes in vivo. Interestingly, ΔSisarnE is more sensitive to NQO than the wild type, and the interaction between SisArnA and SisArnE is strengthened after NQO treatment, suggesting a positive role of SisArnE in DDR. Finally, transcriptomic analysis reveals that SisArnA represses a number of genes, implying that archaea apply the FHA/phospho-peptide recognition module for extensive transcriptional regulation. IMPORTANCE Cellular adaption to diverse environmental stresses requires a signal sensor and transducer for cell survival. Protein phosphorylation and its recognition by forkhead-associated (FHA) domain proteins are widely used for signal transduction in eukaryotes. Although FHA proteins exist in archaea and bacteria, investigation of their functions, especially those in DNA damage response (DDR), is limited. Therefore, the evolution and functional conservation of FHA proteins in the three domains of life is still a mystery. Here, we find that an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) represses the transcription of pili genes together with its phosphorylated partner SisArnB. SisArnA derepression facilitates DNA exchange and repair in the presence of DNA damage. The fact that more genes including a dozen of those involved in DDR are found to be regulated by SisArnA implies that the FHA/phosphorylation module may serve as an important signal transduction pathway for transcriptional regulation in archaeal DDR.


Assuntos
Archaea , Fatores de Transcrição Forkhead , Archaea/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Dano ao DNA , Fosforilação
19.
mLife ; 2(1): 11-27, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38818338

RESUMO

Kinase, putative Endopeptidase, and Other Proteins of Small size (KEOPS) is a multisubunit protein complex conserved in eukaryotes and archaea. It is composed of Pcc1, Kae1, Bud32, Cgi121, and Gon7 in eukaryotes and is primarily involved in N6-threonylcarbamoyl adenosine (t6A) modification of transfer RNAs (tRNAs). Recently, it was reported that KEOPS participates in homologous recombination (HR) repair in yeast. To characterize the KEOPS in archaea (aKEOPS), we conducted genetic and biochemical analyses of its encoding genes in the hyperthermophilic archaeon Saccharolobus islandicus. We show that aKEOPS also possesses five subunits, Pcc1, Kae1, Bud32, Cgi121, and Pcc1-like (or Gon7-like), just like eukaryotic KEOPS. Pcc1-like has physical interactions with Kae1 and Pcc1 and can mediate the monomerization of the dimeric subcomplex (Kae1-Pcc1-Pcc1-Kae1), suggesting that Pcc1-like is a functional homolog of the eukaryotic Gon7 subunit. Strikingly, none of the genes encoding aKEOPS subunits, including Pcc1 and Pcc1-like, can be deleted in the wild type and in a t6A modification complementary strain named TsaKI, implying that the aKEOPS complex is essential for an additional cellular process in this archaeon. Knock-down of the Cgi121 subunit leads to severe growth retardance in the wild type that is partially rescued in TsaKI. These results suggest that aKEOPS plays an essential role independent of the cellular t6A modification level. In addition, archaeal Cgi121 possesses dsDNA-binding activity that relies on its tRNA 3' CCA tail binding module. Our study clarifies the subunit organization of archaeal KEOPS and suggests an origin of eukaryotic Gon7. The study also reveals a possible link between the function in t6A modification and the additional function, presumably HR.

20.
iScience ; 26(12): 108389, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38034349

RESUMO

Single-stranded DNA-binding proteins (SSBs) have been regarded as indispensable replication factors. Herein, we report that the genes encoding the canonical SSB (SisSSB) and the non-canonical SSB (SisDBP) in Saccharolobus islandicus REY15A are not essential for cell viability. Interestingly, at a lower temperature (55°C), the protein level of SisSSB increases and the growth of ΔSisssb and ΔSisssbΔSisdbp is retarded. SisSSB exhibits melting activity on dsRNA and DNA/RNA hybrid in vitro and is able to melt RNA hairpin in Escherichia coli. Furthermore, the core SisSSB domain is able to complement the absence of cold-shock proteins in E. coli. Importantly, these activities are conserved in the canonical SSBs from Crenarchaeota species that lack bacterial Csp homologs. Overall, our study has clarified the function of the archaeal canonical SSBs which do not function as a DNA-processing factor, but play a role in the processes requiring melting of dsRNA or DNA/RNA hybrid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA