RESUMO
The well-known food-borne pathogen Vibrio parahaemolyticus employs at least three quorum sensing signals to maintain its high environmental adaptability. V. parahaemolyticus CqsA, the synthase involved in 3-hydroxyundecan-4-one quorum sensing signal, introduces a quorum sensing network. The V. parahaemolyticus virulent factor type VI secretion system 2 (T6SS2), which is associated with adhesion to host cells, was previously reported to be regulated by a quorum sensing system. Herein, we set out to determine the role of CqsA-introduced quorum sensing (CIQS) in T6SS2-associated virulent regulation. Using a tandem mass tag (TMT)-based quantitative proteomics assay, 17 T6SS2 proteins were found having significantly higher abundances in the ΔcqsA strain than in the wild type strain. TMT proteomics assay results were confirmed by a parallel reaction-monitoring (PRM)-based proteomics assay. Two T6SS2 up-regulators, OpaR and CalR, were found under control of CIQS in the TMT proteomics assay, while OpaR was down-regulated and CalR was up-regulated by CIQS. Thus, it was hypothesized that CIQS would inhibit T6SS2 with an OpaR-dependent mechanism. Epistasis experiment with quantitative PCR was designed to analyze the role of OpaR in the process of CIQS inhibiting T6SS2 production. The mRNA levels of T6SS2 genes were up-regulated in the ΔcqsA strain while down-regulated in the ΔopaR strain and in the ΔcqsAΔopaR mutant, indicating that OpaR plays a predominant role in the regulation of T6SS2 by CIQS. Using a cell adhesion assay, we further found that the T6SS2-dependent adhesion activity of V. parahaemolyticus to Hela cells was also inhibited by CIQS and the inhibition was OpaR-dependent. In this study, we confirmed that V. parahaemolyticus CIQS inhibited T6SS2 through an OpaR-dependent pathway. It enriches the knowledge of how V. parahaemolyticus quorum sensing regulates its virulence.
Assuntos
Sistemas de Secreção Tipo VI , Vibrio parahaemolyticus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Regiões Promotoras Genéticas , Percepção de Quorum , Fatores de Transcrição/genética , Vibrio parahaemolyticus/genéticaRESUMO
BACKGROUND: The fifth wave of H7N9 avian influenza virus caused a large number of human infections and a large number of poultry deaths in China. Since September 2017, mainland China has begun to vaccinate poultry with H5 + H7 avian influenza vaccine. We investigated the avian influenza virus infections in different types of live poultry markets and samples before and after genotype H5 + H7 vaccination in Nanchang, and analyzed the changes of the HA subtypes of AIVs. METHODS: From 2016 to 2019, we monitored different live poultry markets and collected specimens, using real-time reverse transcription polymerase chain reaction (RT-PCR) technology to detect the nucleic acid of type A avian influenza virus in the samples. The H5, H7 and H9 subtypes of influenza viruses were further classified for the positive results. The χ2 test was used to compare the differences in the separation rates of different avian influenza subtypes. RESULTS: We analyzed 5,196 samples collected before and after vaccination and found that the infection rate of AIV in wholesale market (21.73%) was lower than that in retail market (24.74%) (P < 0.05). Among all the samples, the positive rate of sewage samples (33.90%) was the highest (P < 0.001). After vaccination, the positive rate of H5 and H7 subtypes decreased, and the positive rate of H9 subtype and untypable HA type increased significantly (P < 0.001). The positive rates of H9 subtype in different types of LPMs and different types of samples increased significantly (P < 0.01), and the positive rates of untypable HA type increased significantly in all environmental samples (P < 0.05). CONCLUSIONS: Since vaccination, the positive rates of H5 and H7 subtypes have decreased, but the positive rates of H9 subtypes have increased to varying degrees in different testing locations and all samples. This results show that the government should establish more complete measures to achieve long-term control of the avian influenza virus.
Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , China/epidemiologia , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , Aves Domésticas , Esgotos , Vacinação/veterináriaRESUMO
BACKGROUND: Human infections with different avian influenza viruses--eg, H5N1, H9N2, and H7N9--have raised concerns about pandemic potential worldwide. We report the first human infection with a novel reassortant avian influenza A H10N8 virus. METHODS: We obtained and analysed clinical, epidemiological, and virological data from a patient from Nanchang City, China. Tracheal aspirate specimens were tested for influenza virus and other possible pathogens by RT-PCR, viral culture, and sequence analyses. A maximum likelihood phylogenetic tree was constructed. FINDINGS: A woman aged 73 years presented with fever and was admitted to hospital on Nov 30, 2013. She developed multiple organ failure and died 9 days after illness onset. A novel reassortant avian influenza A H10N8 virus was isolated from the tracheal aspirate specimen obtained from the patient 7 days after onset of illness. Sequence analyses revealed that all the genes of the virus were of avian origin, with six internal genes from avian influenza A H9N2 viruses. The aminoacid motif GlnSerGly at residues 226-228 of the haemagglutinin protein indicated avian-like receptor binding preference. A mixture of glutamic acid and lysine at residue 627 in PB2 protein--which is associated with mammalian adaptation--was detected in the original tracheal aspirate samples. The virus was sensitive to neuraminidase inhibitors. Sputum and blood cultures and deep sequencing analysis indicated no co-infection with bacteria or fungi. Epidemiological investigation established that the patient had visited a live poultry market 4 days before illness onset. INTERPRETATION: The novel reassortant H10N8 virus obtained is distinct from previously reported H10N8 viruses. The virus caused human infection and could have been associated with the death of a patient. FUNDING: Emergency Research Project on human infection with avian influenza H7N9 virus, the National Basic Research Program of China, and the National Mega-projects for Infectious Diseases.
Assuntos
Vírus da Influenza A/classificação , Influenza Aviária/virologia , Influenza Humana/diagnóstico , Influenza Humana/virologia , Insuficiência de Múltiplos Órgãos/virologia , Aves Domésticas/virologia , Idoso , Animais , Antivirais/farmacologia , China , Comércio , DNA Viral/análise , Evolução Fatal , Feminino , Ácido Glutâmico/metabolismo , Humanos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Lisina/metabolismo , Neuraminidase/antagonistas & inibidores , Filogenia , RNA Polimerase Dependente de RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Traqueia/virologia , Proteínas Virais/metabolismoRESUMO
An outbreak of hand, foot, and mouth disease was reported through hospital-based surveillance in Nanchang, China in 2014. A total of 244 cases were reported, 176 (72.1%) cases were tested positive for enteroviruses by direct reverse transcription-polymerase chain reaction, in which enterovirus A71 (EV-A71), coxsackievirus A16 (CV-A16), and untyped enteroviruses (UEV) accounted for 84.1%, 3.4%, and 12.5%, respectively. In this outbreak, children under 5 years old constituted more than 98% of the positive cases, and the ratio of male to female cases was 2.6 to 1 (P < 0.01). Phylogenetic analysis indicated that the Nanchang EV-A71 strains belonged to subgenotype C4a undergoing continuously evolutionary changes.
Assuntos
Surtos de Doenças , Enterovirus Humano A/classificação , Enterovirus Humano A/genética , Genótipo , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/virologia , Distribuição por Idade , Criança , Pré-Escolar , China/epidemiologia , Enterovirus Humano A/isolamento & purificação , Evolução Molecular , Feminino , Humanos , Lactente , Masculino , Epidemiologia Molecular , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Crayfish (Procambarus clarkii) are economically important freshwater crustaceans. With the growth of the crayfish industry, the associated food-safety risks should be seriously considered. Although Vibrio parahaemolyticus is commonly recognized as a halophilic foodborne pathogen associated with seafood, it has been found to be a major pathogen in crayfish-associated food poisoning cases. In this study, the V. parahaemolyticus contamination level in crayfish production-sale chain was investigated using crayfish and environmental samples collected from crayfish farms and markets. Serious V. parahaemolyticus contamination (detection rate of 66%) was found in the entire crayfish production-sale chain, while the V. parahaemolyticus contamination level of the market samples was extremely high (detection rate of 92%). The V. parahaemolyticus detection rate of crayfish surface was similar to that of whole crayfish, indicating that crayfish surface was important for V. parahaemolyticus contamination. The simulation experiments of crayfish for sale being contaminated by different V. parahaemolyticus sources were performed. All the contamination sources, containing V. parahaemolyticus-positive tank, water, and crayfish, were found to be efficient to contaminate crayfish. The crayfish tank displayed the most significant contaminating role, while the water seemed to inhibit the V. parahaemolyticus contamination. The contamination extent of the crayfish increased with the number of V. parahaemolyticus cells the tank carried and the contact time of the crayfish and the tank, but decreased with the time that the crayfish were maintained in the water. It was also confirmed that the crayfish surface was more susceptible to V. parahaemolyticus contamination than the crayfish intestine. Furthermore, the adsorption of V. parahaemolyticus onto the crayfish shell was analyzed. Over 90% of the V. parahaemolyticus cells were adsorbed onto the crayfish shell in 6 h, indicating a significant adsorption effect between V. parahaemolyticus and the crayfish shell. In conclusion, within a water-free sale style, the fresh crayfish for sale in aquatic products markets uses its shell to capture V. parahaemolyticus cells from the V. parahaemolyticus-abundant environments. The V. parahaemolyticus contamination in crayfish for sale exacerbates the crayfish-associated food-safety risk. This study sheds light on V. parahaemolyticus control and prevention in crayfish industry.
RESUMO
Introduction: Pathogen spectrum of Hand, foot and mouth disease (HFMD) has substantially changed in the past decade in China. Growing evidence has indicated that anti-COVID-19 nonpharmaceutical interventions (NPIs) can support control of various infectious diseases, including intestinal diseases. Methods: In this study, HFMD cases were enrolled from sentinel hospitals of Nanchang, Jiangxi province, and enteroviruses were genotyped using specific real time RT-PCR. We systematically characterized the epidemiology of HFMD based on the continuous molecular surveillance and estimated the impact of COVID-19 intervention on HFMD incidence using seasonal autoregressive integrated moving average (ARIMA) models. Results: A total of 10247 HFMD cases were included during 2010-2022, of which 6121 enterovirus (EV)-positive cases (59.7%) were identified by real-time RT-PCR. Over 80% cases were associated with EV-A71 and coxsackievirus A16 (CVA16) during 2010-2012, while the type distribution significantly changed as CVA6 emerged to be dominant, accounting for 22.6%-59.6% during 2013-2022. It was observed that the prevalence patterns of EV-A71 and CVA16 were similar and both of them peaked in the second quarter and then leveled off. However, CVA6 was generally prevalent around the fourth quarter, demonstrating a staggered prevalence during 2010-2019. During the COVID-19 epidemic, the seasonal HFMD epidemic peak was restrained, and the ARIMA analysis indicated that the COVID-19 intervention had mitigated EV transmission during the first COVID-19 outbreak in early 2020. In addition, bivariate Spearman's cross-correlation coefficients were estimated for the major types CVA6, CVA16 and EV-A71. Our analyses indicated the possible existence of correlations among CVA6, CVA16 and EV-A71 prevalence in the epidemiological level. Discussion: Taken together, the type distribution of HFMD has substantially changed over the last decade and CVA6 and CVA16 are currently the most predominant types co-circulating in Nanchang. The anti-COVID-19 NPIs significantly reduced the incidence of EV infections.
RESUMO
We investigated fluctuations in the detection rates of avian influenza virus (AIV) subtypes H5, H7, and H9 in live poultry in Nanchang city, Chinese province Jiangxi, before and after the Chinese nationwide AIV vaccination campaign against highly pathogenic (HP) AIV subtype H5 and H7. Samples were tested for nucleic acid of type A avian influenza virus by real-time reverse transcription polymerase chain reaction technology. The H5, H7 and H9 subtypes of influenza viruses were further classified for the positive results. Based on the analysis of 2119 samples collected from February 2016 to December 2019, we found that AIV subtypes H5, H7, H9 showed a seasonal pattern, and the positive rate of avian influenza tended to reach its peak in the colder season. The detection rate of AIV subtypes H5, H7, H9 of chickens (39.26%) was significantly higher than that of ducks (5.78%) and pigeons (4.31%). After vaccination, the positive rates of the H5 subtype (0.27%) and the H7 subtype (0.00%) decreased significantly, while the positive rate of the H9 subtype (29.95%) increased significantly. The H9 subtype has become the dominant subtype detected in live poultry and occupies a dominant position in the live bird market. This study showed that the government of China should establish measures for the long-term control of avian influenza.
Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Galinhas , China/epidemiologia , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , Aves Domésticas , Vacinação/veterináriaRESUMO
Antimicrobial-resistant bacteria causing intractable and even fatal infections are a major health concern. Resistant bacteria residing in the intestinal tract of healthy individuals present a silent threat because of frequent transmission via conjugation and transposition. Plasmids harboring quinolone resistance genes are increasingly detected in clinical isolates worldwide. Here, we investigated the molecular epidemiology of plasmid-mediated quinolone resistance (PMQR) in Gram-negative bacteria from healthy service trade workers. From 157 rectal swab samples, 125 ciprofloxacin-resistant strains, including 112 Escherichia coli, 10 Klebsiella pneumoniae, two Proteus mirabilis, and one Citrobacter braakii, were isolated. Multiplex PCR screening identified 39 strains harboring the PMQR genes (including 17 qnr,19 aac(6')-Ib-cr, and 22 oqxA/oqxB). The genome and plasmid sequences of 39 and 31 strains, respectively, were obtained by short- and long-read sequencing. PMQR genes mainly resided in the IncFIB, IncFII, and IncR plasmids, and coexisted with 3-11 other resistance genes. The high PMQR gene carriage rate among Gram-negative bacteria isolated from healthy individuals suggests the high-frequency transmission of these genes via plasmids, along with other resistance genes. Thus, healthy individuals may spread antibiotic-resistant bacterial, highlighting the need for improved monitoring and control of the spread of antibiotic-resistant bacteria and genes in healthy individuals.
RESUMO
This article aims to understand the changes in the detection rates of H5, H7, and H9 subtypes of avian influenza viruses (AIVs) in the live poultry markets (LPMs) in Nanchang City, Jiangxi Province, before and after the outbreak of the COVID-19. From 2019 to 2020, we monitored the LPM and collected specimens, using real-time reverse transcription polymerase chain reaction technology to detect the nucleic acid of type A AIV in the samples. The H5, H7, and H9 subtypes of influenza viruses were further classified for positive results. We analyzed 1,959 samples before and after the outbreak and found that the positive rates of avian influenza A virus (39.69%) and H9 subtype (30.66%) after the outbreak were significantly higher than before the outbreak (26.84% and 20.90%, respectively; P < 0.001). In various LPMs, the positive rate of H9 subtypes has increased significantly (P ≤ 0.001). Positive rates of the H9 subtype in duck, fecal, daub, and sewage samples, but not chicken samples, have increased to varying degrees. This study shows that additional measures are needed to strengthen the control of AIVs now that LPMs have reopened after the relaxing of COVID-19-related restrictions.
Assuntos
COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Animais , COVID-19/epidemiologia , China/epidemiologia , Patos/virologia , Microbiologia Ambiental , Fezes/virologia , Humanos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A/classificação , Aves Domésticas , Esgotos/virologiaRESUMO
In the article by Wu et al. published in Journal of Microbiology 2019; 57, 1105-1114, the figure 8 is unfortunately incorrect. The figure 8 should be corrected as below.
RESUMO
In order to adapt to different environments, Vibrio parahaemolyticus employed a complicated quorum sensing system to orchestrate gene expression and diverse colony morphology patterns. In this study, the function of the putative quorum sensing signal synthase gene cqsA (VPA0711 in V. Parahaemolyticus strain RIMD2210633 genome) was investigated. The cloning and expression of V. parahaemolyticus cqsA in Escherichia coli system induced the production of a new quorum sensing signal that was found in its culture supernatant. The signal was purified by high performance liquid chromatography methods and determined to be 3-hydroxyundecan- 4-one by indirect and direct mass spectra assays. The deletion of cqsA in RIMD2210633 changed V. parahaemolyticus colony morphology from the classical 'fried-egg' shape (thick and opaque in the center, while thin and translucent in the edge) of the wild-type colony to a 'pancake' shape (no significant difference between the centre and the edge) of the cqsA deleted colony. This morphological change could be restored by complementary experiment with cqsA gene or the signal extract. In addition, the expression of opaR, a well-known quorum sensing regulatory gene, could be up-regulated by cqsA deletion. Our results suggested that V. parahaemolyticus used cqsA to produce 3-hydroxyundecan-4-one signal and thereby regulated colony morphology and other quorum sensing-associated behaviors.
Assuntos
Proteínas de Bactérias/metabolismo , Percepção de Quorum , Transdução de Sinais , Vibrio parahaemolyticus/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Fenótipo , Fatores de Transcrição/metabolismo , Vibrio/genética , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/crescimento & desenvolvimentoRESUMO
Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response.
Assuntos
Vírus da Influenza A Subtipo H10N8/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Aves , China/epidemiologia , Monitoramento Epidemiológico , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H10N8/genética , Neuraminidase/genética , Aves Domésticas , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/genéticaRESUMO
Three human cases of H10N8 virus infections were initially reported in China in late 2013 and early 2014, two of which were fatal. This was the first time the H10N8 subtype has been detected in humans, and the pathogenicity of this virus remains under characterized. We first assessed its pathogenicity by infecting BALB/c mice with two H10N8 isolates, A/Jiangxi-Donghu/346-1/2013 and A/Chicken/Jiangxi/102/2013. The human isolate (H346-1) demonstrated stronger capability of replication and induced higher cytokine response in vivo than the chicken isolate (C102). In addition, H346-1 was fatal to mice, while all mice (N = 14) in C102-infected group survived during the infection course without weight loss. We hypothesized that the 627K mutation in the PB2 gene (PB2-K627) in H346-1 was associated with high pathogenicity in mice. Taken together, this study based on mouse model provides some insight into understanding the pathogenicity of the emerging viruses in mammals.
Assuntos
Vírus da Influenza A Subtipo H10N8/patogenicidade , Infecções por Orthomyxoviridae/virologia , Animais , Citocinas/sangue , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos/virologia , Infecções por Orthomyxoviridae/patologiaRESUMO
Infection with the novel H10N8 virus in humans has raised concerns about its pandemic potential worldwide. We report the results of a cross-sectional study of avian influenza viruses (AIVs) in live poultry markets (LPMs) in Nanchang, China, after the first human case of H10N8 virus infection was reported in the city. A total of 201 specimens tested positive for AIVs among 618 samples collected from 24 LPMs in Nanchang from December 2013 to January 2014. We found that the LPMs were heavily contaminated by AIVs, with H9, H10, and H5 being the predominant subtypes and more than half of the LPMs providing samples that were positive for the H10 subtype. Moreover, the coexistence of different subtypes was common in LPMs. Of the 201 positive samples, 20.9% (42/201) had mixed infections with AIVs of different HA subtypes. Of the 42 mixed infections, 50% (21/42) showed the coexistence of the H9 and H10 subtypes, with or without H5, and were from chicken samples. This indicated that the H10N8 virus probably originated from segment reassortment of the H9 and H10 subtypes.
Assuntos
Galinhas/virologia , Coinfecção , Surtos de Doenças/estatística & dados numéricos , Vírus da Influenza A Subtipo H10N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana/virologia , Animais , China , Coinfecção/epidemiologia , Coinfecção/virologia , Humanos , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologiaRESUMO
Following the first human infection with the influenza A (H10N8) virus in Nanchang, China in December 2013, we identified two additional patients on January 19 and February 9, 2014. The epidemiologic, clinical, and virological data from the patients and the environmental specimen collected from 23 local live poultry markets (LPMs) were analyzed. The three H10N8 cases had a history of poultry exposure and presented with high fever (>38°C), rapidly progressive pneumonia and lymphopenia. Substantial high levels of cytokines and chemokines were observed. The sequences from an isolate (A/Environment/Jiangxi/03489/2013 [H10N8]) in an epidemiologically linked LPM showed highly identity with human H10N8 virus, evidencing LPM as the source of human infection. The HA and NA of human and environmental H10N8 isolates showed high identity (99.1-99.9%) while six genotypes with internal genes derived from H9N2, H7N3 and H7N9 subtype viruses were detected in environmental H10N8 isolates. The genotype of the virus causing human infection, Jiangxi/346, possessed a whole internal gene set of the A/Environment/Jiangxi/10618/2014(H9N2)-like virus. Thus, our findings support the notion that LPMs can act as both a gene pool for the generation of novel reassortants and a source for human infection, and intensive surveillance and management should therefore be conducted.
Assuntos
Vírus da Influenza A Subtipo H10N8/genética , Influenza Aviária/virologia , Influenza Humana/diagnóstico , Idoso , Animais , Quimiocinas/sangue , China/epidemiologia , Citocinas/sangue , Feminino , Genótipo , Hemaglutininas/genética , Humanos , Vírus da Influenza A Subtipo H10N8/classificação , Vírus da Influenza A Subtipo H10N8/isolamento & purificação , Vírus da Influenza A Subtipo H7N3/genética , Vírus da Influenza A Subtipo H7N3/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Neuraminidase/genética , Filogenia , Aves DomésticasRESUMO
Hand, foot, and mouth disease (HFMD) is caused by enteroviruses, most commonly enterovirus 71 (EV71) and coxsackievirus A16 (CA16). In general, EV71 infection is more likely to induce severe complications and mortality than other enterovirus infections. The present study focuses on the molecular epidemiology of human EV71 strains in the Nanchang region of China in 2011. Overall, 651 specimens (throat or rectal swabs) were collected, and one-step reverse transcriptase-polymerase chain reaction was performed for analysis. Enteroviruses were detected in 62.2% (405/651) of the specimens. EV71, CA16, and other enteroviruses were found in 292, 73, and 40 specimens, respectively. Phylogenetic analysis of the VP1 region of the 8 EV71 strains found in the Nanchang region indicated that these strains belong to the C4 subgenotype. This study shows that the C4 subgenotype strain of EV71 was prevalent in the HFMD cases of Nanchang in 2011, and it reports the first incidence of adults being infected by EV71 in the Nanchang region. Thus, the surveillance of HFMD epidemiology and monitoring of HFMD severity should be continued.