Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 904, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775625

RESUMO

BACKGROUND: Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, has been one of the most devastating pathogens affecting soybean production. In the United States alone, SCN damage accounted for more than $1 billion loss annually. With a narrow genetic background of the currently available SCN-resistant commercial cultivars, high risk of resistance breakdown can occur. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify QTL, SNP markers, and candidate genes associated with soybean leaf chlorophyll content tolerance to SCN infection, and to carry out a genomic selection (GS) study for the chlorophyll content tolerance. RESULTS: A total of 172 soybean genotypes were evaluated for the effect of SCN HG Type 1.2.3.5.6.7 (race 4) on soybean leaf chlorophyll. The soybean lines were genotyped using a total of 4089 filtered and high-quality SNPs. Results showed that (1) a large variation in SCN tolerance based on leaf chlorophyll content indices (CCI); (2) a total of 22, 14, and 16 SNPs associated with CCI of non-SCN-infected plants, SCN-infected plants, and reduction of CCI SCN, respectively; (3) a new locus of chlorophyll content tolerance to SCN mapped on chromosome 3; (4) candidate genes encoding for Leucine-rich repeat protein, plant hormone signaling molecules, and biomolecule transporters; and (5) an average GS accuracy ranging from 0.31 to 0.46 with all SNPs and varying from 0.55 to 0.76 when GWAS-derived SNP markers were used across five models. This study demonstrated the potential of using genome-wide selection to breed chlorophyll-content-tolerant soybean for managing SCN. CONCLUSIONS: In this study, soybean accessions with higher CCI under SCN infestation, and molecular markers associated with chlorophyll content related to SCN were identified. In addition, a total of 15 candidate genes associated with chlorophyll content tolerance to SCN in soybean were also identified. These candidate genes will lead to a better understanding of the molecular mechanisms that control chlorophyll content tolerance to SCN in soybean. Genomic selection analysis of chlorophyll content tolerance to SCN showed that using significant SNPs obtained from GWAS could provide better GS accuracy.


Assuntos
Clorofila/metabolismo , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Glycine max/genética , Glycine max/metabolismo , Interações Hospedeiro-Parasita/genética , Animais , Genes de Plantas , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Glycine max/parasitologia , Tylenchoidea
2.
Plant Genome ; : e20497, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075664

RESUMO

Bananas (Musa spp.) are one of the most highly consumed fruits globally, grown in the tropical and sub-tropical regions. We evaluated 856 Musa accessions from the breeding programs of the International Institute of Tropical Agriculture of Nigeria, Tanzania, and Uganda; the National Agricultural Research Organization of Uganda; the Brazilian Agricultural Research Corporation (Embrapa); and the National Research Centre for Banana of India. Accessions from the in vitro gene bank at the International Transit Centre in Belgium were included to provide a baseline of available global diversity. A total of 16,903 informative single nucleotide polymorphism markers were used to estimate and characterize the genetic diversity and population structure and identify overlaps and unique material among the breeding programs. Analysis of molecular variance displayed low genetic variation among accessions and diploids and a higher variation among tetraploids (p < 0.001). Structure analysis revealed two major clusters corresponding to genomic composition. The results indicate that there is potential for the banana breeding programs to increase the diversity in their breeding materials and should exploit this potential for parental improvement and to enhance genetic gains in future breeding efforts.

3.
PLoS One ; 15(7): e0235089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673346

RESUMO

Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is one of the most devastating pathogens affecting soybean production in the U.S. and worldwide. The use of SCN-resistant soybean cultivars is one of the most affordable strategies to cope with SCN infestation. Because of the limited sources of SCN resistance and changes in SCN virulence phenotypes, host resistance in current cultivars has increasingly been overcome by the pathogen. Host tolerance has been recognized as an additional tool to manage the SCN. The objectives of this study were to conduct a genome-wide association study (GWAS), to identify single nucleotide polymorphism (SNP) markers, and to perform a genomic selection (GS) study for SCN tolerance in soybean based on reduction in biomass. A total of 234 soybean genotypes (lines) were evaluated for their tolerance to SCN in greenhouse using four replicates. The tolerance index (TI = 100 × Biomass of a line in SCN infested / Biomass of the line without SCN) was used as phenotypic data of SCN tolerance. GWAS was conducted using a total of 3,782 high quality SNPs. GS was performed based upon the whole set of SNPs and the GWAS-derived SNPs, respectively. Results showed that (1) a large variation in soybean TI to SCN infection among the soybean genotypes was identified; (2) a total of 35, 21, and 6 SNPs were found to be associated with SCN tolerance using the models SMR, GLM (PCA), and MLM (PCA+K) with 6 SNPs overlapping between models; (3) GS accuracy was SNP set-, model-, and training population size-dependent; and (4) genes around Glyma.06G134900, Glyma.15G097500.1, Glyma.15G100900.3, Glyma.15G105400, Glyma.15G107200, and Glyma.19G121200.1 (Table 4). Glyma.06G134900, Glyma.15G097500.1, Glyma.15G100900.3, Glyma.15G105400, and Glyma.19G121200.1 are best candidates. To the best of our knowledge, this is the first report highlighting SNP markers associated with tolerance index based on biomass reduction under SCN infestation in soybean. This research opens a new approach to use SCN tolerance in soybean breeding and the SNP markers will provide a tool for breeders to select for SCN tolerance.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Glycine max/genética , Tylenchoidea/patogenicidade , Animais , Biomassa , Genes de Plantas , Marcadores Genéticos , Genoma de Planta , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Infecções por Secernentea/prevenção & controle , Glycine max/parasitologia
4.
Genetics ; 203(3): 1453-67, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27182953

RESUMO

The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r(2) = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm.


Assuntos
Genética Populacional/métodos , Hordeum/genética , Endogamia/métodos , Locos de Características Quantitativas/genética , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Estudos de Associação Genética , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA