Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cancer Immunol Immunother ; 71(4): 875-887, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34477901

RESUMO

Harnessing or monitoring immune cells is actually a major topic in pre-clinical and clinical studies in acute myeloid leukemia (AML). Mucosal-Associated Invariant T cells (MAIT) constitute one of the largest subset of innate-like, cytotoxic T cell subsets in humans. Despite some papers suggesting a role for MAIT cells in cancer, their specific involvement remains unclear, especially in myeloid malignancies. This prospective monocentric study included 216 patients with a newly diagnosed AML. Circulating MAIT cells were quantified by flow cytometry at diagnosis and during intensive chemotherapy. We observed that circulating MAIT cells show a specific decline in AML patients at diagnosis compared to healthy donors. Post-induction monitored patients presented with a drastic drop in MAIT cell numbers, with recovery after one month. We also found correlation between decrease in MAIT cells number and adverse cytogenetic profile. FLT3-ITD and IDH ½ mutations were associated with higher MAIT cell numbers. Patients with high level of activated MAIT cells are under-represented within patients with a favorable cytogenetic profile, and over-represented among patients with IDH1 mutations or bi-allelic CEBPA mutations. We show for the first time that circulating MAIT cells are affected in newly diagnosed AML patients, suggesting a link between MAIT cells and AML progression. Our work fosters new studies to deepen our knowledge about the role of MAIT cells in cancer.


Assuntos
Leucemia Mieloide Aguda , Células T Invariantes Associadas à Mucosa , Análise Citogenética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Estudos Prospectivos
2.
Crit Care Med ; 49(9): 1513-1523, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900216

RESUMO

RATIONALE: There is an unmet need to improve the description of the state of T-cell exhaustion in patients with sepsis, its reproducibility and correlation with the outcomes before including immunotherapy (like recombinant interleukin-7 or immune checkpoint inhibitors) in the therapeutic armamentarium against sepsis. DESIGN: Observational prospective study. SETTING: Two ICUs in a teaching hospital (France). PATIENTS: Eighty patients with sepsis admitted to the ICU. INTERVENTIONS: Quantification of CD4+ and CD8+ T-cell exhaustion at days 1 and 3. Quantification of the exhaustion markers (programmed death [PD]-1, 2B4, and cluster of differentiation [CD] 160) on T cells, the number of CD4+ regulatory T cells (CD3+ CD4+ CD25hi CD127Lo cells), and the phorbol myristate acetate/ionomycin/ionomycin-induced cytokines production (tumor necrosis factor-α, interleukin-2, and interferon-γ). MEASUREMENTS AND MAIN RESULTS: Using unsupervised clustering analysis, patients could be split in three clusters according to their dominant pattern expression of exhaustion markers on CD8+ T cells (i.e., 2B4lowPD-1lowCD160low, 2B4hiPD-1hiCD160low, and 2B4hiPD-1lowCD160hi) regardless of their underlying morbidities. Only 2B4hiPD-1hiCD160low CD8+ T cells had cytokine production defect, whereas 2B4hi PD-1lowCD160hi pattern correlated with cytokine overproduction. Patients with a predominant "highly activated" 2B4hiPD-1lowCD160hi pattern did not develop secondary bacterial infections. By multivariate analysis, Simplified Acute Physiology Score 2 gravity score at day 1 (p = 0.003) and patterns of exhaustion markers on CD8+ T cells (p = 0.03) were associated with the risk of death. Neither the level of CD4+ regulatory T cells nor the CD4+ exhaustion patterns were associated with the outcomes. CONCLUSIONS: Easy-to-use multicolor flow cytometry assessing 2B4, PD-1, and CD160 expression on CD8+ T cells at day 1 identifies septic patients with poor outcome and discriminates patient subsets in who immunomodulatory drugs should be tested.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Sepse/complicações , Idoso , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Feminino , França , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Sepse/metabolismo , Índice de Gravidade de Doença
4.
J Biol Inorg Chem ; 20(4): 729-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25846142

RESUMO

With the aim of finding selective and biologically active G-quadruplex ligands, modified porphyrin with bulky cationic substituents, meso-5,10,15,20-tetrakis(4-guanidinophenyl)porphyrin tetrahydrochloride, referred to as guanidinium phenyl porphyrin, was prepared. The corresponding nickel(II) and cobalt(III) metallated porphyrins were also synthesized. Interaction with quadruplexes was examined by means of fluorescence resonance energy transfer melting and surface plasmon resonance-based assays: the three compounds proved to bind to G-quadruplex DNA in a similar and highly selective way. Guanidinium phenyl porphyrin and its nickel(II) metallated derivative exhibit moderate cytotoxicity toward cells in culture. Strikingly, the nickel porphyrin derivative was able to displace hPOT1 shelterin protein from telomeres in human cells. Nickel(II) guanidinium phenyl porphyrin, a cationic bulky porphyrin is a powerful specific G-quadruplex DNA ligand. It enters the cells and induces shelterin modification.


Assuntos
Quadruplex G/efeitos dos fármacos , Guanidina/química , Metaloporfirinas/farmacologia , Níquel/química , Porfirinas/química , Proteínas de Ligação a Telômeros/metabolismo , Telômero/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Cobalto/química , Relação Dose-Resposta a Droga , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Metaloporfirinas/síntese química , Metaloporfirinas/química , Estrutura Molecular , Transporte Proteico/efeitos dos fármacos , Complexo Shelterina , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas
5.
Inorg Chem ; 53(23): 12519-31, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25383703

RESUMO

A series of nine Ni(II) salophen complexes involving one, two, or three alkyl-imidazolium side-chains was prepared. The lengths of the side-chains were varied from one to three carbons. The crystal structure of one complex revealed a square planar geometry of the nickel ion. Fluorescence resonance energy transfer melting of G-quadruplex structures in the presence of salophen complex were performed. The G-quadruplex DNA structures were stabilized in the presence of the complexes, but a duplex DNA was not. The binding constants of the complexes for parallel and antiparallel G-quadruplex DNA, as well as hairpin DNA, were measured by surface plasmon resonance. The compounds were selective for G-quadruplex DNA, as reflected by equilibrium dissociation constant KD values in the region 0.1-1 µM for G-quadruplexes and greater than 2 µM for duplex DNA. Complexes with more and shorter side-chains had the highest binding constants. The structural basis for the interaction of the complexes with the human telomeric G-quadruplex DNA was investigated by computational studies: the aromatic core of the complex stacked over the last tetrad of the G-quadruplex with peripherical cationic side chains inserted into opposite grooves. Biochemical studies (telomeric repeat amplification protocol assays) indicated that the complexes significantly inhibited telomerase activity with IC50 values as low as 700 nM; the complexes did not significantly inhibit polymerase activity.


Assuntos
Quadruplex G , Compostos Organometálicos/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
6.
Molecules ; 19(4): 4200-11, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24705564

RESUMO

With at least 60% of the Millettia species (Fabaceae) being in medicinal use, we found it relevant to assess the potential antiprotozoal and antifungal activities of Millettia richardiana. Water and methanol crude extracts of the stem barks from M. richardiana and the six fractions resulting from the fractionation of the methanol extract were tested. The dichloromethane extracted fraction showed the best in vitro antiprotozoal activities (IC50=5.8 µg/mL against Plasmodium falciparum, 11.8 µg/mL against Leishmania donovani and 12.8 µg/mL against Trypanosoma brucei brucei) as well as low cytotoxicity on several cell lines. The phytochemical analysis showed this selected fraction to be rich in terpenoids and alkaloids, which could explain its antiparasitic activity. A phytochemical study revealed the presence of lonchocarpenin, betulinic acid, ß-amyrin, lupeol, palmitic acid, linoleic acid and stearic acid, among which betulinic acid and lupeol could be the compounds responsible of these antiprotozoal activities. By contrast, neither the crude extracts nor the fractions showed antifungal activity against Candida. These results confirm the importance of the genus Millettia in Malagasy ethnomedicine, its potential use in antiparasitic therapy, and the interest of developing a sustainable exploitation of this plant. Moreover, both molecules betulinic acid and lupeol appeared as very relevant molecules for their antiprotozoal properties.


Assuntos
Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Millettia/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Trypanosoma brucei brucei/efeitos dos fármacos , Alcaloides/isolamento & purificação , Antiprotozoários/química , Leishmania donovani/crescimento & desenvolvimento , Madagáscar , Metanol , Cloreto de Metileno , Casca de Planta/química , Extratos Vegetais/química , Caules de Planta/química , Plasmodium falciparum/crescimento & desenvolvimento , Solventes , Terpenos/isolamento & purificação , Trypanosoma brucei brucei/crescimento & desenvolvimento
7.
Blood Adv ; 6(6): 1813-1825, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-34570200

RESUMO

Sezary syndrome (SS) is a rare leukemic form of cutaneous T-cell lymphoma. Diagnosis mainly depends on flow cytometry, but results are not specific enough to be unequivocal. The difficulty in defining a single marker that could characterize Sezary cells may be the consequence of different pathological subtypes. In this study, we used multivariate flow cytometry analyses. We chose to investigate the expression of classical CD3, CD4, CD7, and CD26 and the new association of 2 markers CD158k and PD-1. We performed lymphocyte computational phenotypic analyses during diagnosis and follow-up of patients with SS to define new SS classes and improve the sensitivity of the diagnosis and the follow-up flow cytometry method. Three classes of SS, defined by different immunophenotypic profiles, CD158k+ SS, CD158k-PD-1+ SS, CD158k and PD-1 double-negative SS, showed different CD8+ and B-cell environments. Such a study could help to diagnose and define biological markers of susceptibility/resistance to treatment, including immunotherapy.


Assuntos
Receptor de Morte Celular Programada 1/imunologia , Receptores KIR2DL2/imunologia , Síndrome de Sézary , Neoplasias Cutâneas , Biomarcadores Tumorais/metabolismo , Humanos , Receptores KIR3DL2 , Síndrome de Sézary/metabolismo , Neoplasias Cutâneas/patologia
8.
Nat Commun ; 12(1): 422, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462236

RESUMO

Drug tolerant/resistant leukemic stem cell (LSC) subpopulations may explain frequent relapses in acute myeloid leukemia (AML), suggesting that these relapse-initiating cells (RICs) persistent after chemotherapy represent bona fide targets to prevent drug resistance and relapse. We uncover that calcitonin receptor-like receptor (CALCRL) is expressed in RICs, and that the overexpression of CALCRL and/or of its ligand adrenomedullin (ADM), and not CGRP, correlates to adverse outcome in AML. CALCRL knockdown impairs leukemic growth, decreases LSC frequency, and sensitizes to cytarabine in patient-derived xenograft models. Mechanistically, the ADM-CALCRL axis drives cell cycle, DNA repair, and mitochondrial OxPHOS function of AML blasts dependent on E2F1 and BCL2. Finally, CALCRL depletion reduces LSC frequency of RICs post-chemotherapy in vivo. In summary, our data highlight a critical role of ADM-CALCRL in post-chemotherapy persistence of these cells, and disclose a promising therapeutic target to prevent relapse in AML.


Assuntos
Adrenomedulina/metabolismo , Antineoplásicos/farmacologia , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Animais , Antineoplásicos/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Cultura Primária de Células , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 12(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384744

RESUMO

The prognostic impact of immunophenotypic CD34+CD38-CD123+ leukemic stem cell (iLSC) frequency at diagnosis has been demonstrated in younger patients treated by intensive chemotherapy, however, this is less clear in older patients. Furthermore, the impact of iLSC in patients treated by hypomethylating agents is unknown. In this single-center study, we prospectively assessed the CD34+CD38-CD123+ iLSC frequency at diagnosis in acute myeloid leukemia (AML) patients aged 60 years or older. In a cohort of 444 patients, the median percentage of iLSC at diagnosis was 4.3%. Significant differences were found between treatment groups with a lower median in the intensive chemotherapy group (0.6%) compared to hypomethylating agents (8.0%) or supportive care (11.1%) (p <0.0001). In the intensive chemotherapy group, the median overall survival was 34.5 months in patients with iLSC ≤0.10% and 14.6 months in patients with >0.10% (p = 0.031). In the multivariate analyses of this group, iLSC frequency was significantly and independently associated with the incidence of relapse, event-free, relapse-free, and overall survival. However, iLSC frequency had no prognostic impact on patients treated by hypomethylating agents. Thus, the iLSC frequency at diagnosis is an independent prognostic factor in older acute myeloid patients treated by intensive chemotherapy but not hypomethylating agents.

10.
Cancer Discov ; 10(10): 1544-1565, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32641297

RESUMO

Relapses driven by chemoresistant leukemic cell populations are the main cause of mortality for patients with acute myeloid leukemia (AML). Here, we show that the ectonucleotidase CD39 (ENTPD1) is upregulated in cytarabine-resistant leukemic cells from both AML cell lines and patient samples in vivo and in vitro. CD39 cell-surface expression and activity is increased in patients with AML upon chemotherapy compared with diagnosis, and enrichment in CD39-expressing blasts is a marker of adverse prognosis in the clinics. High CD39 activity promotes cytarabine resistance by enhancing mitochondrial activity and biogenesis through activation of a cAMP-mediated adaptive mitochondrial stress response. Finally, genetic and pharmacologic inhibition of CD39 ecto-ATPase activity blocks the mitochondrial reprogramming triggered by cytarabine treatment and markedly enhances its cytotoxicity in AML cells in vitro and in vivo. Together, these results reveal CD39 as a new residual disease marker and a promising therapeutic target to improve chemotherapy response in AML. SIGNIFICANCE: Extracellular ATP and CD39-P2RY13-cAMP-OxPHOS axis are key regulators of cytarabine resistance, offering a new promising therapeutic strategy in AML.This article is highlighted in the In This Issue feature, p. 1426.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Citarabina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/metabolismo , Citarabina/farmacologia , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade
11.
Oncoimmunology ; 6(3): e1284723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405516

RESUMO

Most human blood γδ cells are cytolytic TCRVγ9Vδ2+ lymphocytes with antitumor activity. They are currently investigated in several clinical trials of cancer immunotherapy but so far, their tumor infiltration has not been systematically explored across human cancers. Novel algorithms allowing the deconvolution of bulk tumor transcriptomes to find the relative proportions of infiltrating leucocytes, such as CIBERSORT, should be appropriate for this aim but in practice they fail to accurately recognize γδ T lymphocytes. Here, by implementing machine learning from microarray data, we first improved the computational identification of blood-derived TCRVγ9Vδ2+ γδ lymphocytes and then applied this strategy to assess their abundance as tumor infiltrating lymphocytes (γδ TIL) in ∼10,000 cancer biopsies from 50 types of hematological and solid malignancies. We observed considerable inter-individual variation of TCRVγ9Vδ2+γδ TIL abundance both within each type and across the spectrum of cancers tested. We report their prominence in B cell-acute lymphoblastic leukemia (B-ALL), acute promyelocytic leukemia (M3-AML) and chronic myeloid leukemia (CML) as well as in inflammatory breast, prostate, esophagus, pancreas and lung carcinoma. Across all cancers, the abundance of αß TILs and TCRVγ9Vδ2+ γδ TILs did not correlate. αß TIL abundance paralleled the mutational load of tumors and positively correlated with inflammation, infiltration of monocytes, macrophages and dendritic cells (DC), antigen processing and presentation, and cytolytic activity, in line with an association with a favorable outcome. In contrast, the abundance of TCRVγ9Vδ2+ γδ TILs did not correlate with these hallmarks and was variably associated with outcome, suggesting that distinct contexts underlie TCRVγ9Vδ2+ γδ TIL and αß TIL mobilizations in cancer.

12.
PLoS One ; 12(7): e0181300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742109

RESUMO

Cerebral malaria (CM) is the most severe manifestation of human malaria yet is still poorly understood. Mouse models have been developed to address the subject. However, their relevance to mimic human pathogenesis is largely debated. Here we study an alternative cerebral malaria model with an experimental Plasmodium berghei Keyberg 173 (K173) infection in Sprague Dawley rats. As in Human, not all infected subjects showed cerebral malaria, with 45% of the rats exhibiting Experimental Cerebral Malaria (ECM) symptoms while the majority (55%) of the remaining rats developed severe anemia and hyperparasitemia (NoECM). These results allow, within the same population, a comparison of the noxious effects of the infection between ECM and severe malaria without ECM. Among the ECM rats, 77.8% died between day 5 and day 12 post-infection, while the remaining rats were spontaneously cured of neurological signs within 24-48 hours. The clinical ECM signs observed were paresis quickly evolving to limb paralysis, global paralysis associated with respiratory distress, and coma. The red blood cell (RBC) count remained normal but a drastic decrease of platelet count and an increase of white blood cell numbers were noted. ECM rats also showed a decrease of glucose and total CO2 levels and an increase of creatinine levels compared to control rats or rats with no ECM. Assessment of the blood-brain barrier revealed loss of integrity, and interestingly histopathological analysis highlighted cyto-adherence and sequestration of infected RBCs in brain vessels from ECM rats only. Overall, this ECM rat model showed numerous clinical and histopathological features similar to Human CM and appears to be a promising model to achieve further understanding the CM pathophysiology in Humans and to evaluate the activity of specific antimalarial drugs in avoiding/limiting cerebral damages from malaria.


Assuntos
Encéfalo/patologia , Encéfalo/parasitologia , Malária Cerebral/patologia , Malária Cerebral/parasitologia , Malária/complicações , Plasmodium berghei/fisiologia , Anemia/complicações , Animais , Encéfalo/irrigação sanguínea , Permeabilidade Capilar , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/patologia , Citocinas/análise , Modelos Animais de Doenças , Eritrócitos/parasitologia , Malária/sangue , Malária/parasitologia , Malária/patologia , Malária Cerebral/sangue , Malária Cerebral/complicações , Masculino , Ratos Sprague-Dawley
13.
Cancer Discov ; 7(7): 716-735, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28416471

RESUMO

Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653.


Assuntos
Citarabina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Antígenos CD36/genética , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Citarabina/efeitos adversos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
ChemMedChem ; 11(11): 1133-6, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27166712

RESUMO

Four nickel(II)-salophen complexes containing alkyl-imidazolium chains connected at the ortho or meta positions were prepared: N,N'-bis(2-hydroxy-4-methyl-3H-imidazol-1-iumbenzylideneamino)phenylenediamine (1), N,N'-bis(2-hydroxy-3-methyl-3H-imidazol-1-iumbenzylideneamino)phenylenediamine (2), N,N'-bis(2-hydroxy-3-methyl-3H-imidazol-1-iumbenzylideneamino)methyl-3H-imidazol-1-iumphenylenediamine (3), and N,N'-bis(2-hydroxy-4-methyl-3H-imidazol-1-iumbenzylideneamino)methyl-3H-imidazol-1-iumphenylenediamine (4). They protect G-quadruplex DNA (G4 -DNA) against thermal denaturation and show KA values in the range of 7.4×10(5) to 4×10(7) m(-1) for G4 -DNA models. Complex 4 exhibits an IC50 value of 70 nm for telomerase inhibition.


Assuntos
Complexos de Coordenação/química , Níquel/química , Salicilatos/química , Telomerase/metabolismo , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Quadruplex G/efeitos dos fármacos , Células HeLa , Humanos , Cinética , Biossíntese de Proteínas/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
PLoS One ; 7(3): e32620, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403683

RESUMO

Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Hemeproteínas/biossíntese , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/metabolismo , Sequência de Aminoácidos , Animais , Antimaláricos/metabolismo , Artemisininas/metabolismo , Resistência a Múltiplos Medicamentos , Feminino , Heme/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Dados de Sequência Molecular , Plasmodium yoelii/citologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA