Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Nat Prod ; 86(5): 1317-1334, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37171174

RESUMO

NMR fingerprints provide powerful tools to identify natural products in complex mixtures. Principal component analysis and machine learning using 1H and 13C NMR data, alongside structural information from 180 published formyl phloroglucinols, have generated diagnostic NMR fingerprints to categorize subclasses within this group. This resulted in the reassignment of 167 NMR chemical shifts ascribed to 44 compounds. Three pyrano-diformyl phloroglucinols, euglobal In-1 and psiguadiols E and G, contained 1H and 13C NMR data inconsistent with their predicted phloroglucinol subclass. Subsequent reinterpretation of their 2D NMR data combined with DFT 13C NMR chemical shift and ECD calculations led to their structure revisions. Direct covariance processing of HMBC data permitted 1H resonances for individual compounds in mixtures to be associated, and analysis of their 1H/13C HMBC correlations using the fingerprint tool further classified components into phloroglucinol subclasses. NMR fingerprinting HMBC data obtained for six eucalypt flower extracts identified three subclasses of pyrano-acyl-formyl phloroglucinols from Eucalyptus gittinsii subsp. gittinsii. New, eucalteretial F and (+)-eucalteretial B, and known, (-)-euglobal VII and eucalrobusone C, compounds, each belonging to predicted subclasses, were isolated and characterized. Staphylococcus aureus and Plasmodium falciparum screening revealed eucalrobusone C as the most potent antiplasmodial formyl phloroglucinol to date.


Assuntos
Eucalyptus , Eucalyptus/química , Floroglucinol/química , Folhas de Planta/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Estrutura Molecular
2.
New Phytol ; 225(1): 488-498, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31412143

RESUMO

Although tannins have been an important focus of studies of plant-animal interactions, traditional tannin analyses cannot differentiate between the diversity of structures present in plants. This has limited our understanding of how different mixtures of these widespread secondary metabolites contribute to variation in biological activity. We used UPLC-MS/MS to determine the concentration and broad composition of tannins and polyphenols in 628 eucalypt (Eucalyptus, Corymbia and Angophora) samples, and related these to three in vitro functional measures believed to influence herbivore defence: protein precipitation capacity, oxidative activity at high pH and capacity to reduce in vitro nitrogen (N) digestibility. Protein precipitation capacity was most strongly correlated with concentrations of procyanidin subunits in proanthocyanidins (PAs), and late-eluting ellagitannins. Capacity to reduce in vitro N digestibility was affected most by the subunit composition and mean degree of polymerisation (mDP) of PAs. Finally, concentrations of ellagitannins and prodelphinidin subunits of PAs were the strongest determinants of oxidative activity. The results illustrate why measures of total tannins rarely correlate with animal feeding responses. However, they also confirm that the analytical techniques utilised here could allow researchers to understand how variation in tannins influence the ecology of individuals and populations of herbivores, and, ultimately, other ecosystem processes.


Assuntos
Herbivoria/fisiologia , Folhas de Planta/metabolismo , Taninos/metabolismo , Modelos Estatísticos , Nitrogênio/metabolismo , Oxirredução , Polifenóis/metabolismo
3.
Plant Physiol ; 172(4): 2286-2299, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27784769

RESUMO

Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage.


Assuntos
Clima Desértico , Ecossistema , Eucalyptus/anatomia & histologia , Eucalyptus/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Feixe Vascular de Plantas/anatomia & histologia , Gases/metabolismo , Modelos Lineares , Estômatos de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Análise de Componente Principal
4.
Mol Biol Evol ; 32(7): 1833-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25777461

RESUMO

We assess phylogenetic patterns of hybridization in the speciose, ecologically and economically important genus Eucalyptus, in order to better understand the evolution of reproductive isolation. Eucalyptus globulus pollen was applied to 99 eucalypt species, mainly from the large commercially important subgenus, Symphyomyrtus. In the 64 species that produce seeds, hybrid compatibility was assessed at two stages, hybrid-production (at approximately 1 month) and hybrid-survival (at 9 months), and compared with phylogenies based on 8,350 genome-wide DArT (diversity arrays technology) markers. Model fitting was used to assess the relationship between compatibility and genetic distance, and whether or not the strength of incompatibility "snowballs" with divergence. There was a decline in compatibility with increasing genetic distance between species. Hybridization was common within two closely related clades (one including E. globulus), but rare between E. globulus and species in two phylogenetically distant clades. Of three alternative models tested (linear, slowdown, and snowball), we found consistent support for a snowball model, indicating that the strength of incompatibility accelerates relative to genetic distance. Although we can only speculate about the genetic basis of this pattern, it is consistent with a Dobzhansky-Muller-model prediction that incompatibilities should snowball with divergence due to negative epistasis. Different rates of compatibility decline in the hybrid-production and hybrid-survival measures suggest that early-acting postmating barriers developed first and are stronger than later-acting barriers. We estimated that complete reproductive isolation can take up to 21-31 My in Eucalyptus. Practical implications for hybrid eucalypt breeding and genetic risk assessment in Australia are discussed.


Assuntos
Eucalyptus/classificação , Eucalyptus/genética , Filogenia , Isolamento Reprodutivo , Intervalos de Confiança , Cruzamentos Genéticos , Hibridização Genética , Modelos Genéticos , Especificidade da Espécie
5.
Mol Phylogenet Evol ; 105: 63-85, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27530705

RESUMO

We used genome-wide markers and an unprecedented scale of sampling to construct a phylogeny for a globally significant Eucalyptus lineage that has been impacted by hybridisation, recent radiation and morphological convergence. Our approach, using 3109 DArT markers distributed throughout the genome and 540 samples covering 185 terminal taxa in sections Maidenaria, Exsertaria, Latoangulatae and related smaller sections, with multiple geographically widespread samples per terminal taxon, produced a phylogeny that largely matched the morphological treatment of sections, though sections Exsertaria and Latoangulatae were polyphyletic. At lower levels there were numerous inconsistencies between the morphological treatment and the molecular phylogeny, and taxa within the three main sections were generally not monophyletic at the series (at least 62% polyphyly) or species (at least 52% polyphyly) level. Some of the discrepancies appear to be the result of morphological convergence or misclassifications, and we propose some taxonomic reassessments to address this. However, many inconsistencies appear to be the products of incomplete speciation and/or hybridisation. Our analysis represents a significant advance on previous phylogenies of these important eucalypt sections (which have mainly used single samples to represent each species), thus providing a robust phylogenetic framework for evolutionary and ecological studies.


Assuntos
Eucalyptus/classificação , Eucalyptus/genética , Genoma de Planta , Internacionalidade , Filogenia , Marcadores Genéticos , Análise de Componente Principal , Especificidade da Espécie
6.
Syst Biol ; 62(1): 62-77, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22914977

RESUMO

We investigate distances on binary (presence/absence) data in the context of a Dollo process, where a trait can only arise once on a phylogenetic tree but may be lost many times. We introduce a novel distance, the Additive Dollo Distance (ADD), that applies to data generated under a Dollo model and show that it has some useful theoretical properties including an intriguing link to the LogDet/paralinear distance. Simulations of Dollo data are used to compare a number of binary distances including ADD, LogDet, a restriction-site-based distance, and some simple, but to our knowledge previously unstudied, variations on common binary distances. The simulations suggest that ADD outperforms other distances on Dollo data. Interestingly, we found that the LogDet distance performs poorly in the context of a Dollo process; this may have implications for its use in connection with conditioned genome reconstruction. We apply the ADD to two Diversity Arrays Technology data sets, one that broadly covers Eucalyptus species and one that focuses on the Eucalyptus series Adnataria. We also reanalyze gene family presence/absence data from bacterial genomes obtained from the COG database and compare the results with previous phylogenies estimated using the conditioned genome reconstruction approach. The results for these case studies are largely congruent with previous studies, in some cases giving more phylogenetic resolution.


Assuntos
Modelos Genéticos , Filogenia , Bactérias/classificação , Bactérias/genética , Simulação por Computador , Eucalyptus/classificação , Eucalyptus/genética , Reprodutibilidade dos Testes , Estatística como Assunto
8.
Mol Phylogenet Evol ; 59(1): 206-24, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21310251

RESUMO

A set of over 8000 Diversity Arrays Technology (DArT) markers was tested for its utility in high-resolution population and phylogenetic studies across a range of Eucalyptus taxa. Small-scale population studies of Eucalyptus camaldulensis, Eucalyptus cladocalyx, Eucalyptus globulus, Eucalyptus grandis, Eucalyptus nitens, Eucalyptus pilularis and Eucalyptus urophylla demonstrated the potential of genome-wide genotyping with DArT markers to differentiate species, to identify interspecific hybrids and to resolve biogeographic disjunctions within species. The population genetic studies resolved geographically partitioned clusters in E. camaldulensis, E. cladocalyx, E. globulus and E. urophylla that were congruent with previous molecular studies. A phylogenetic study of 94 eucalypt species provided results that were largely congruent with traditional taxonomy and ITS-based phylogenies, but provided more resolution within major clades than had been obtained previously. Ascertainment bias (the bias introduced in a phylogeny from using markers developed in a small sample of the taxa that are being studied) was not detected. DArT offers an unprecedented level of resolution for population genetic, phylogenetic and evolutionary studies across the full range of Eucalyptus species.


Assuntos
Eucalyptus/genética , Estudo de Associação Genômica Ampla/métodos , Filogenia , Teorema de Bayes , DNA Espaçador Ribossômico/genética , Eucalyptus/classificação , Marcadores Genéticos , Variação Genética , Genótipo , Ensaios de Triagem em Larga Escala/métodos , Hibridização Genética , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo Genético , Reprodutibilidade dos Testes
9.
J Chem Ecol ; 36(7): 727-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20556637

RESUMO

Different folivorous marsupials select their food from different subgenera of Eucalyptus, but the choices cannot be explained by known antifeedants, such as formylated phloroglucinol compounds or tannins, or by nutritional quality. Eucalypts contain a wide variety of plant secondary metabolites so it is difficult to use traditional methods to identify the chemicals that determine food selection. Therefore, we used a metabolomic approach in which we employed (1)H nuclear magnetic resonance spectroscopy to compare chemical structures of representatives from the two subgenera and to identify chemicals that consistently differ between them. We found that dichloromethane extracts of leaves from most species in the subgenus Eucalyptus differ from those in Symphyomyrtus by the presence of free flavanones, having no substitution in Ring B. Although flavanoids are known to deter feeding by certain insects, their effects on marsupials have not been established and must be tested with controlled feeding studies.


Assuntos
Eucalyptus/química , Animais , Comportamento Alimentar , Flavanonas/química , Espectroscopia de Ressonância Magnética , Marsupiais/fisiologia , Metabolômica , Folhas de Planta/química , Análise de Componente Principal
10.
Tree Physiol ; 30(6): 741-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20462935

RESUMO

One-year-old sun leaves of 60 species of Eucalyptus were collected in August 2005 at an arboretum in South Australia with a mean annual rainfall of 427 mm, and 14 of the same species were sampled at an arboretum in Western Australia with a mean annual rainfall of 216 mm. We determined the genetic and phenotypic variation in carbon isotope composition (delta13C), specific leaf area (SLA) and nitrogen content per unit area of the species at each site. There were very significant (P < 0.001) differences in delta13C among the species at both sites. The mean delta13C of the 60 species at the wetter site was -27.6 per thousand (from -25.8 per thousand in Eucalyptus youngiana to -29.9 per thousand in Eucalyptus salicola) and of the 14 species at the drier site was -25.3 per thousand (from -23.7 per thousand in Eucalyptus ravida to -27.3 per thousand in Eucalyptus ewartiana). Of the 14 species common to both sites, four species had similar values of delta13C at the two sites despite the differences in rainfall, whereas in others the values of delta13C were significantly (P < 0.001) lower (more negative) at the wet than at the dry site. The SLA and nitrogen content per unit leaf area also differed significantly among the species (P < 0.001), but there was not a common relationship between delta13C and SLA or between delta13C and nitrogen content at the two sites. The strong species by environment interaction resulted from some species demonstrating phenotypic plasticity for delta13C, while others were inherently stable across environments.


Assuntos
Isótopos de Carbono/metabolismo , Eucalyptus/crescimento & desenvolvimento , Nitrogênio/metabolismo , Silicatos de Alumínio , Argila , Ecossistema , Meio Ambiente , Eucalyptus/classificação , Eucalyptus/metabolismo , Folhas de Planta/metabolismo , Solo , Austrália do Sul , Especificidade da Espécie , Especificidade por Substrato
11.
Physiol Plant ; 132(4): 440-5, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18333997

RESUMO

Leaf carbon isotope discrimination (delta13C) was widely considered to directly reflect the rainfall environment in which the leaf developed, but recent observations have queried this. The relationship between delta13C and rainfall was explored in Eucalyptus species growing along a rainfall gradient in Australia. The leaves of 43 species of Eucalyptus and the closely related Corymbia species produced in 2003 were sampled in September 2004 at 50 sites and grouped into 15 locations along a rainfall gradient in southwest Western Australia. At 24 sites, the same species and same trees were sampled as in a study in September 2003 when leaves produced in 2002 were sampled. The rainfall in 2004 was on average 190 mm (range 135-270 mm) higher at all locations than in 2003. In the leaves sampled in 2004, the mean carbon isotope discrimination (delta13C) across the 15 locations decreased 2.9 per thousand per 1000 mm of rainfall, the specific leaf area (SLA) increased by 2.9 m2 kg(-1) per 1000 mm of rainfall and the nitrogen (N) content decreased by 1.56 g m(-2) per 1000 mm of rainfall. In contrast, a comparison between the leaves produced in the drier 2002 year compared with the wetter 2003 year showed that there was a strong correlation (r2= 0.85) between the SLA values between years and a trend for higher values with increasing SLA, but the values of delta(13)C were on average only 0.38 per thousand lower (more negative) at all locations in the wetter year, equivalent to a decrease of 2.0 per thousand per 1000 mm of rainfall. The results suggest that while there may be constitutive differences in leaf morphology, SLA and N content per unit area, increasing rainfall or cloudiness associated with higher rainfall increases SLA and decreases N content per unit area. We conclude that rainfall does not directly influence delta13C, but induces leaf morphological and physiological changes that affect the resultant delta13C.


Assuntos
Isótopos de Carbono/metabolismo , Eucalyptus/metabolismo , Folhas de Planta/metabolismo , Chuva
12.
Tree Physiol ; 38(10): 1451-1460, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032311

RESUMO

Trees and shrubs from the genus Eucalyptus are characterized by the presence of numerous foliar oil glands that generally house mono- and sesquiterpenes. In some species, glands are also known to house substantial quantities of unrelated secondary metabolites such as volatile, aromatic ß-triketones. It is not known if these compounds are co-housed with terpenes or if they are produced in distinct, metabolically specialized glands. We showed that Eucalyptus brevistylis-a species with appreciable foliar quantities of both ß-triketones and terpenes-contains two visually distinct gland types in leaves, one that is translucent and the other golden-brown. Gas chromatographic analyses of solvent extracts of the two gland types showed that the translucent glands contain sesquiterpene alcohol cubenols and cubebols (termed 'sesquiterpene glands'), whereas the golden-brown glands contain predominantly the ß-triketone conglomerone with lesser amounts of sesquiterpene hydrocarbon caryophyllenes (termed 'triketone glands'). Analysis of leaves from trees of different ages, from young saplings through to advanced age trees, showed a gradual increase in the abundance of sesquiterpene glands relative to triketone glands as plants aged. Such ontogenetic regulation of foliar secondary metabolite concentration appears to be a common feature of Eucalyptus species, albeit at different temporal scales. A similar ontogenetic pattern was observed in ageing leaves, with mature leaves having a higher proportion of sesquiterpene glands than young leaf tips. It is concluded that regulation of the relative abundances of the two gland types with ontogeny likely reflects the different herbivores present at the different life stages of leaves and whole plants. In particular, leaf tips and young plants may be advantaged by deploying higher amounts of insecticidal ß-triketones. The concurrent deployment of two metabolically distinct gland types in leaves is a rare phenomenon and a novel finding for myrtaceous trees.


Assuntos
Eucalyptus/química , Cetonas/metabolismo , Terpenos/metabolismo , Cromatografia Gasosa , Eucalyptus/metabolismo , Folhas de Planta/química
13.
Phytochemistry ; 144: 197-207, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28957714

RESUMO

Many studies quantify total phenolics or total tannins, but understanding the ecological role of polyphenolic secondary metabolites requires at least an understanding of the diversity of phenolic groups present. We used UPLC-MS/MS to measure concentrations of different polyphenol groups - including the four most common tannin groups, the three most common flavonoid groups, and quinic acid derivatives - in foliage from 628 eucalypts from the genera Eucalyptus, Angophora and Corymbia. We also tested for phylogenetic signal in each of the phenolic groups. Many eucalypts contained high concentrations of polyphenols, particularly ellagitannins, which have been relatively poorly studied, but may possess strong oxidative activity. Because the biosynthetic pathways of many phenolic compounds share either precursors or enzymes, we found negative correlations between the concentrations of several of the constituents that we measured, including proanthocyanidins (PAs) and hydrolysable tannins (HTs), HTs and flavonol derivatives, and HTs and quinic acid derivatives. We observed moderate phylogenetic signal in all polyphenol constituents, apart from the concentration of the prodelphinidin subunit of PAs and the mean degree of polymerisation of PAs. These two traits, which have previously been shown to be important in determining plants' protein precipitation capacity, may have evolved under selection, perhaps in response to climate or herbivore pressure. Hence, the signature of evolutionary history appears to have been erased for these traits. This study is an important step in moving away from analysing "totals" to a better understanding of how phylogenetic effects influence phenolic composition, and how this in turn influences ecological processes.


Assuntos
Eucalyptus/química , Polifenóis/análise , Estrutura Molecular , Filogenia , Taninos/análise
14.
Tree Physiol ; 26(4): 479-92, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16414927

RESUMO

Leaves and samples of recent wood of Eucalyptus species were collected along a rainfall gradient parallel to the coast of Western Australia between Perth in the north and Walpole in the south and along a southwest to northeast transect from Walpole in southwestern Australia, to near Mount Olga in central Australia. The collection included 65 species of Eucalyptus sampled at 73 sites and many of the species were collected at several sites along the rainfall gradient. Specific leaf area (SLA) and isotopic ratio of 13C to 12C (delta 13C) of leaves that grew in 2002, and tree ring growth and delta 13C of individual cell layers of the wood were measured. Rainfall data were obtained from the Australian Bureau of Meteorology for 29 locations that represented one or a few closely located collection sites. Site-averaged data and species-specific values of delta 13C decreased with decreasing annual rainfall between 1200 and 300 mm at a rate of 1.63 per thousand per 1000 mm decrease in rainfall. Responses became variable in the low rainfall region (< 300 mm), with some species showing decreasing delta 13C with rainfall, whereas delta 13C increased or remained constant in other species. The range of delta 13C values in the low rainfall region was as large as the range observed at sites receiving > 300 mm of annual rainfall. Specific leaf area varied between 2 and 6 m2 kg(-1) and tended to increase with decreasing annual rainfall in some species, but not all, whereas delta 13C decreased with SLA. The relationship between delta 13C and SLA was highly species and soil-type specific. Leaf-area-based nitrogen (N) content varied between 2 and almost 6 g m(-2) and decreased with rainfall. Thus, thicker leaves were associated with higher N content and this compensated for the effect of drought on delta 13C. Nitrogen content was also related to soil type and species identity. Based on a linear mixed model, statistical analysis of the whole data set showed that 27% of the variation in delta 13C was associated with changes in SLA, 16% with soil type and only 1% with rainfall. Additionally, 21% was associated with species identity. For a subset of sites with > 300 mm rainfall, 43% of the variation was explained by SLA, 13% by soil type and only 3% by rainfall. The species effect decreased to 9% because there were fewer species in the subset of sites. The small effect of rainfall on delta 13C was further supported by a path analysis that yielded a standardized path coefficient of 0.38 for the effect of rainfall on SLA and -0.50 for the effect of SLA on delta 13C, but an insignificantly low standardized path coefficient of -0.05 for the direct effect of rainfall on delta 13C. Thus, in contrast to our hypothesis that delta 13C decreases with rainfall independent of soil type and species, we detected no statistically significant relationship between rainfall and delta 13C in leaves of trees growing at sites receiving < 300 mm of rainfall annually. Rainfall affected delta 13C indirectly through soil type (a surrogate for water-holding capacity) across the rainfall gradient. Annual tree rings are not clearly visible in evergreen Eucalyptus species, even in the seasonally cool climate of SW Australia. Generally, visible density transitions in the wood are related not to a strict annual cycle but to periods of growth associated mainly with rainfall. The relationship between delta 13C of leaves and the width of these stem increments was not statistically significant. Analysis of stem growth periods showed that delta 13C in wood responded to rainfall events, but carbohydrate storage and reallocation also affected the isotopic signature. Although delta 13C in wood of any one species varied over a range of 2 to 4 per thousand, there was a general relationship between delta 13C of the leaves and the annual range of delta 13C in wood. We conclude that species-specific traits are important in understanding the response of Eucalyptus to rainfall and that the diversity of the genus may reflect its response to the large climatic gradient in Australia and to the large annual and interannual variations in rainfall at any one location.


Assuntos
Carbono/metabolismo , Eucalyptus/metabolismo , Folhas de Planta/metabolismo , Árvores/metabolismo , Madeira/metabolismo , Austrália , Biodiversidade , Isótopos de Carbono/metabolismo , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Chuva , Solo , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
16.
PLoS One ; 11(3): e0151432, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977933

RESUMO

The sub-dermal secretory cavities (glands) embedded within the leaves of Eucalyptus (Myrtaceae) were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone) was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone) was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-ß-triketone conjugates. In addition, glands contain free ß-triketones, ß-triketone heterodimers and chromone C-glucosides. Therefore, the foliar glands of this taxonomically distinct group of plants are a rich source of a range of flavonoids and other biologically active compounds with great commercial potential.


Assuntos
Eucalyptus/anatomia & histologia , Flavanonas/isolamento & purificação , Flavonoides/isolamento & purificação , Folhas de Planta/química , Acetonitrilas , Fracionamento Químico , Eucalyptus/química , Cromatografia Gasosa-Espectrometria de Massas , Glucosídeos/isolamento & purificação , Hexanos , Cetonas/isolamento & purificação , Extratos Vegetais/química , Folhas de Planta/ultraestrutura , Solventes , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA