RESUMO
This study aims to investigate the effect and mechanism of Maxingshigan Decoction on inflammation in the rat model of cough variant asthma(CVA). The SPF-grade SD rats of 6-8 weeks were randomized into normal, model, Montelukast sodium, and low-, medium-, and high-dose Maxing Shigan Decoction groups, with 8 rats in each group. The CVA rat model was induced by ovalbumin(OVA) and aluminum hydroxide sensitization and ovalbumin stimulation. The normal group and model group were administrated with equal volume of normal saline by gavage, and other groups with corresponding drugs by gavage. After the experiment, the number of white blood cells in blood and the levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α) in the serum were measured. The lung tissue was stained with hematoxylin-eosin(HE). Western blot was employed to determine the protein levels of nuclear factor-κB(NF-κB), Toll-like receptor 4(TLR4), myeloid differentiation protein(MyD88), and mitogen-activated protein kinase(MAPK) in the lung tissue. Real-time PCR was carried out to measure the mRNA levels of TLR4 and MyD88 in the lung tissue. Compared with the normal group, the model group showed increased white blood cells, elevated IL-6 and TNF-α levels(P<0.01), lowered IL-10 level(P<0.01), up-regulated protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK(P<0.01) and mRNA levels of TLR4 and MyD88(P<0.01) in the lung tissue. HE staining showed obvious infiltration of inflammatory cells around the airway and cell disarrangement in the model group. Compared with the model group, Montelukast sodium and high-dose Maxing Shigan Decoction reduced the white blood cells, lowered the IL-6 and TNF-α levels(P<0.01), and elevated the IL-10 level(P<0.01). Moreover, they down-regulated the protein levels of TLR4, MyD88, p-p65/NF-κB p65, p-p38 MAPK/p38 MAPK in the lung tissue(P<0.01) and the mRNA levels of TLR4 and MyD88 in the lung tissue(P<0.01). HE staining showed that Montelukast sodium and high-dose Maxing Shigan Decoction reduced inflammatory cell infiltration and cell disarrangement. The number of white blood cells, the levels of IL-10 and TNF-α in the serum, the protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK, and the mRNA levels of TLR4 and MyD88 in the lung tissue showed no significant differences between the Montelukast sodium group and high-dose Maxing Shigan Decoction group. Maxing Shigan Decoction can inhibit airway inflammation in CVA rats by inhibiting the activation of TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.
Assuntos
Acetatos , Variante Tussígena da Asma , Ciclopropanos , NF-kappa B , Quinolinas , Sulfetos , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Interleucina-10/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratos Sprague-Dawley , Ovalbumina , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inflamação , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , RNA MensageiroRESUMO
By integrating network pharmacology and animal experiments, we studied the pharmacodynamic mechanism of the Tibetan medicine Liurui Capsules in the treatment of experimental autoimmune uveitis(EAU). The active ingredients and targets of Liurui Capsules were searched against the Encyclopedia of Traditional Chinese Medicine(ETCM), Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine(BATMAN-TCM), and relevant literatures. The EAU-related targets were obtained from Gene Expression Omnibus(GEO), GeneCards, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). The common targets shared by Liurui Capsules and EAU were identified, and the protein-protein interaction(PPI) network was established via STRING. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were conducted via g: Profiler. The rat model of EAU was induced by interphotoreceptor retinoid-binding protein(IRBP) and treated with Liurui Capsules. The inflammatory response of anterior segment and the pathological morphology of retina were observed. The mRNA and protein levels of delta-like ligand 4(DLL4), Notch1, interleukin-17(IL-17), and tumor necrosis factor-alpha(TNF-α) were determined by real-time quantitative PCR(q-PCR) and Western blot, respectively. The network pharmacology analysis predicted 51 common targets of Liurui Capsules and EAU, which were mainly involved in IL-17, TNF, and nuclear factor-kappa B(NF-κB) signaling pathways, as well as liposome receptors and other biological processes. Compared with the control group, the modeling of EAU caused inflammatory changes in the anterior segment and retina and up-regulated mRNA and protein levels of DLL4, Notch1, IL-17, and TNF-α in ocular tissue. Compared with the model group, Liurui Capsules reduced the inflammatory reaction of anterior segment and retina and down-regulated the mRNA and protein levels of DLL4, Notch1, IL-17, and TNF-α. Liurui Capsules can down-regulate the expression of the proteins involved in DLL4/Notch1/IL-17 signaling pathway in ocular tissue and alleviate the ocular inflammation, which may be one of the mechanisms of Liurui Capsules in the treatment of EAU.
Assuntos
Experimentação Animal , Medicamentos de Ervas Chinesas , Uveíte , Ratos , Animais , Interleucina-17/efeitos adversos , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa , Medicina Tradicional Tibetana , Cápsulas , Farmacologia em Rede , Uveíte/tratamento farmacológico , Uveíte/genética , Inflamação , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos , Simulação de Acoplamento MolecularRESUMO
Skin itching is a subjective sensation that causes the desire to scratch. It is one of the most common clinical symptoms at department of dermatology, even the only complaint of dermatological patients, which seriously affects the quality life of patients. Therefore, based on the software of traditional Chinese medicine inheritance auxiliary platform, association rules and complex system entropy clustering were adopted to collect and analyze Zhang Bing's prescriptions for skin itching, and get the drug use frequency and the relationship between drugs. Based on that, we could conclude the experience for skin itching. A total of 147 prescriptions were collected, 20 drugs with a frequency of 34 or more and 20 high-frequency drug combinations were analyzed, and 14 core combinations and 7 new prescriptions were excavated. The high-frequency drugs included Kochiae Fructus, Dictamni Cortex, Mori Cortex. The high-frequency drug combinations included "Kochiae Fructus-Dictamni Cortex" "Angelicae Dahuricae Radix-Chuanxiong Rhizoma" "Paeoniae Radix Rubra-Paeoniae Radix Alba", and the core combinations included "Schizonepetae Herba-Saposhnikoviae Radix-Cinnamomi Ramulus" "Arctii Fructus-Cicadae Periostracum-Houttuyniae Herba" "Ghrysanthemi Indici Flos-Kochiae Fructus-Dictamni Cortex", and new formulations include "Schizonepetae Herba, Saposhnikoviae Radix, Cinnamomi Ramulus, Clematidis Radix et Rhizoma, Tribuli Fructus, Dictamni Cortex", "Phellodendri Chinensis Coritex, Lonicerae Japonicae Flos, Atractylodis Rhizoma, Ghrysanthemi Indici Flos, Kochiae Fructus, Dictamni Cortex" "Arctii Fructus, Cicadae Periostracum, Houttuyniae Herba, Trichosanthis Fructus". The result of this research shows that Professor Zhang Bing's experience in the treatment of skin itching is mainly to dispelling wind and arresting itching, clearing heat and drying dampness.
Assuntos
Mineração de Dados , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Prurido/tratamento farmacológico , Combinação de Medicamentos , Humanos , SoftwareRESUMO
Xanthii Fructus is a traditional Chinese medicine for the treatment of sinusitis and headache,rich in medicinal materials and is widely used for more than 1 800 years. Modern pharmacological studies have showed that Xanthii Fructus has anti-inflammatory,analgesic,anti-tumor,anti-bacterial,hypoglycemic,anti-allergic,immunomodulatory and other pharmacological effects,which can be commonly used in the treatment of diseases relating to immune abnormalities,such as rheumatoid arthritis,acute and chronic rhinitis,allergic rhinitis,and skin diseases,with a high medicinal value. Toxicological studies have shown that Xanthii Fructus poisoning can cause substantial damage to organs,such as the liver,kidney,and gastrointestinal tract,especially to liver. Because of the coexisting of its efficacy and toxicity,Xanthii Fructus often leads to a series of safety problems in the clinical application process. This study attempts to summarize its characteristics of adverse reactions,analyze the root cause of the toxicity of Xanthii Fructus from such aspects as processing,dose,course of treatment and eating by mistake,discuss the substance of its efficacy/toxicity from chemical compositions,and put forward exploratory thinking about how to promote its clinical rational application from the aspects such as strict processing,reasonable compatibility,medication information,contraindication,strict control of the dose,and course of treatment,so as to promote the safe and reasonable application of Xanthii Fructus.
Assuntos
Medicamentos de Ervas Chinesas/efeitos adversos , Frutas/toxicidade , Xanthium/toxicidade , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional ChinesaRESUMO
Sixty SD male rats were randomly divided into normal group, model group, benzbromarone group(20 mgâ¢kg⻹â¢d⻹), chicory extract high dose, middle dose and low dose groups (5, 7.5, 10 gâ¢kg⻹â¢d⻹). The rats in normal group were given with water, and the rats in other groups were given with 10% fructose solution to establish hyperuricemia models. All the rats were sacrificed on the 42th day. Then their serum uric acid(SUA), serum creatinine(CRE), urea nitrogen(BUN) and urinary uric acid(UUA) levels were detected to calculate the clearance rate of uric acid in kidney(CUA). Meanwhile, the protein and gene expression levels of renal glucose transporter family member 9(Glut9) were detected by immunohistochemical and Real-time quantitative reverse transcription-polymerase chain reaction(RT-qPCR) methods. The effects of Chinese herb chicory extract on expression of renal Glut9 and decreasing uric acid were explored in this study, and the results showed that chicory extract could reduce SUA level in rats with hyperuricemia, increase renal CUA, decrease the protein expression of renal Glut9, inhibit uric acid re-absorption in kidney, and thus promote renal uric acid excretion.
Assuntos
Cichorium intybus/química , Medicamentos de Ervas Chinesas/farmacologia , Hiperuricemia/tratamento farmacológico , Proteínas de Transporte de Monossacarídeos/metabolismo , Animais , Benzobromarona , Rim/efeitos dos fármacos , Masculino , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Ácido Úrico/sangueRESUMO
Human xanthine oxidase is considered to be a target for therapy of hyperuricemia. Cichorium intybus is a Chinese plant medicine which widely used in Xinjiang against various diseases. In order to screen the inhibitors of xanthine oxidase from C. intybus and to explore main pharmacological actions of cichory a compound collection of C. intybus was built via consulting related references about chemical research on cichory. The three-dimensional crystal structure of xanthine oxidase (PDB code: 1N5X) from Protein Data Bank was downloaded.. Autodock 4.2 was employed to screen the inhibitors of xanthine oxidase from cichory 70 compounds were found to possess quite low binding free energy comparing with TEI (febuxostat). C. intybus contains constituents possessing potential inhibitive activity against xanthine oxidase. It can explain the main pharmacological actions of cichory which can significantly lower the level of serum uric acid.