Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542854

RESUMO

This paper developed a method for preparing ultrasound-responsive microgels based on reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HAD) dynamic covalent bonding. First, a styrene cross-linked network was successfully prepared by a Diels-Alder (DA) reaction between phosphoryl dithioester and furan using double-ended diethoxyphosphoryl dithiocarbonate (BDEPDF) for RAFT reagent-mediated styrene (St) polymerization, with a double-ended dienophile linker and copolymer of furfuryl methacrylate (FMA) and St as the dienophile. Subsequently, the microgel system was constructed by the HDA reaction between phosphoryl disulfide and furan groups using the copolymer of polyethylene glycol monomethyl ether acrylate (OEGMA) and FMA as the dienophore building block and hydrophilic segment and the polystyrene pro-dienophile linker as the cross-linker and hydrophobic segment. The number of furans in the dienophile chain and the length of the dienophile linker were regulated by RAFT polymerization to investigate the effects of the single-molecule chain functional group degree, furan/dithioester ratio, and hydrophobic cross-linker length on the microgel system. The prepared microgels can achieve the reversible transformation of materials under force responsiveness, and their preparation steps are simple and adaptive to various potential applications in biomedical materials and adaptive electrical materials.

2.
Polymers (Basel) ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732655

RESUMO

The aging behavior and life prediction of rubber composites are crucial for ensuring high-voltage transmission line safety. In this study, commercially available ethylene-propylene-diene monomer (EPDM) spacer composites were chosen and investigated to elucidate the structure and performance changes under various aging conditions. The results showed an increased C=O peak intensity with increasing aging time, suggesting intensified oxidation of ethylene and propylene units. Furthermore, the surface morphology of commercial EPDM composites displayed increased roughness and aggregation after aging. Furthermore, hardness, modulus at 100% elongation, and tensile strength of commercial EPDM composites exhibited a general increase, while elongation at break decreased. Additionally, the damping performance decreased significantly after aging, with a 20.6% reduction in loss factor (20 °C) after aging at 100 °C for 672 h. With increasing aging time and temperature, the compression set gradually rose due to the irreversible movement of the rubber chains under stress. A life prediction model was developed based on a compression set to estimate the lifetime of rubber composites for spacer bars. The results showed that the product's life was 8.4 years at 20 °C. Therefore, the establishment of a life prediction model for rubber composites can provide valuable technical support for spacer product services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA