Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(4): 651-664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430372

RESUMO

Manufacturing high-performance and reusable materials from radioactive uranium-containing wastewater remains a significant challenge. Herein, a supramolecular self-assembly strategy was proposed, using melamine and cyanuric acid as precursors and using intermolecular hydrogen bond force to form carbon nitride (CN-D) in different solvents through a single thermal polymerization strategy. Supramolecular self-assembly method is a promising strategy to synthesize a novel carbon nitride with molecular regulatory properties. In addition, 98% of U(VI) in wastewater can be removed by using CN-D for 60 min under visible light. After five cycles of recycling, more than 95% of U(VI) can still be reduced, indicating that it has good recyclability and reusability. This study not only provides an efficient photocatalytic method of uranium reduction, but also provides a new method for self-assembly synthesis.

2.
Photochem Photobiol Sci ; 22(1): 59-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36087239

RESUMO

As a clean energy source, nuclear energy can gradually replace traditional fossil energy sources, and is an important means to achieve the "double carbon goal". Uranium-containing wastewater is inevitable in the development of nuclear energy. The composites MIL/CNx of MOF material MIL-100(Fe) and carbon nitride (CN) were obtained by a simple solvo-thermal method using iron nitrate, homophthalic acid and CN. The material MIL-100(Fe) with high specific surface area was compounded with CN to increase the in-plane adsorption sites, which could adsorb 30% of uranium in solution during the dark reaction. The close interfacial contact of the two materials effectively inhibited the complexation of photo-generated electrons and holes and promotes electron migration. These two synergistic effects improved their overall photocatalytic reduction capacity, which could reduce 97% of UO22+ in solution in 20 min. The UO22+ removal efficiency of MIL/CN0.1 was 2.3 and 1.6 times higher than that of CN and MIL-100(Fe), respectively. In addition, MIL/CN0.1 was stable in reducing uranium during the five cycles of the experiment.


Assuntos
Urânio , Ferro , Águas Residuárias , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA