Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(26): e202404388, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38641988

RESUMO

Photoinduced Pd-catalyzed bisfunctionalization of butadienes with a readily available organic halide and a nucleophile represents an emerging and attractive method to assemble versatile alkenes bearing various functional groups at the allylic position. However, enantiocontrol and/or diastereocontrol in the C-C or C-X bond-formation step have not been solved due to the open-shell process. Herein, we present a cascade asymmetric dearomatization reaction of indoles via photoexcited Pd-catalyzed 1,2-biscarbonfunctionalization of 1,3-butadienes, wherein asymmetric control on both the nucleophile and electrophile part is achieved for the first time in photoinduced bisfunctionalization of butadienes. This method delivers structurally novel chiral spiroindolenines bearing two contiguous stereogenic centers with high diastereomeric ratios (up to >20 : 1 dr) and good to excellent enantiomeric ratios (up to 97 : 3 er). Experimental and computational studies of the mechanism have confirmed a radical pathway involving excited-state palladium catalysis. The alignment and non-covalent interactions between the substrate and the catalyst were found to be essential for stereocontrol.

2.
J Org Chem ; 87(5): 2797-2808, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076229

RESUMO

A [3+1+1+1] annulation of arylamines, arylaldehydes, and dimethyl sulfoxide (DMSO) to the pyridine structure in quinolines using DMSO as a nonadjacent dual-methine (═CH-) synthon is disclosed. In this annulation, arylamines provide two carbon atoms and one nitrogen atom, arylaldehydes furnish one carbon atom, and DMSO provides two nonadjacent methines (═CH-) to the pyridine ring in quinoline molecules. This annulation provides a simple approach for the synthesis of 3-arylquinolines from readily available substrates in useful yields. On the basis of the control experiments and the literature, a plausible mechanism is proposed.


Assuntos
Dimetil Sulfóxido , Quinolinas , Aminas , Carbono , Piridinas , Quinolinas/química
3.
J Org Chem ; 87(11): 7022-7032, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35583475

RESUMO

The regioselective synthetic approach to higher alkenes from lower alkenes by using sulfoxides as alkyl or aryl reagents in the Fe3+/H2O2 system has been developed. This reaction realized direct alkylation or arylation of alkenes. In this reaction, sulfoxides afforded one Csp3 or Csp2 atom to the C═C bond of alkenes; one new Csp2-Csp3 bond or Csp2-Csp2 bond was formed. Nearly 40 products including di-, tri-, and tetra-substituted products were regioselectively synthesized. Both aliphatic and aromatic alkenes could participate in this reaction. Moreover, not only dimethyl sulfoxide but also three other sulfoxides can be applied to this reaction, including diethyl, dibenzyl, and diphenyl sulfoxide. The mechanism studies showed that this reaction may experience a coupling process via radical addition-elimination and the Fe3+/H2O2 system made the sulfoxides offered one alkyl or aryl radical to the C═C bond of alkenes.

4.
J Org Chem ; 86(21): 15228-15241, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632772

RESUMO

An unexpected annulation among 2-aminobenzyl alcohols, benzaldehydes, and DMSO to quinolines has been disclosed. For the reported annulation between 2-aminobenzyl alcohols and benzaldehydes, the change of the solvent from toluene to DMSO led to the change of the product from the diheteroatomic cyclic benzoxazines to monoheteroatomic cyclic quinolines. This annulation can be used to synthesize regioselectively different substituted quinolines by the choice of different 2-amino alcohols, aldehydes, and sulfoxides as substrates. Interestingly, introducing substituent groups to the α-position of sulfoxides resulted in the interchange of the positions between benzaldehydes and sulfoxides in the product quinolines. On the basis of the control experiments and literatures, a plausible mechanism for this annulation was proposed.


Assuntos
Benzaldeídos , Quinolinas , Aldeídos , Dimetil Sulfóxido , Solventes
5.
J Org Chem ; 86(19): 13446-13453, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546730

RESUMO

Two C═C bond participation in annulation to pyridines using N,N-dimethylformamide (DMF) as the N1 and C4 synthons has been carried out. In this reaction, DMF contributed one N atom and one C atom to two disconnected positions of pyridine ring, with no need for an additional nitrogen source. Two C═C bonds in two molecules of substituted styrenes offered four carbon atoms in the presence of iodine and persulfate. With the optimized conditions in hand, both symmetric and unsymmetric diaryl-substituted pyridines were obtained in useful yields. On the basis of relevant literature and a series of control experimental results, a possible mechanism was proposed in this work, which may demonstrate how DMF provides both N1 and C4 sources.

6.
J Org Chem ; 85(5): 3287-3296, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944119

RESUMO

The metal-free-catalyzed synthesis of allyl nitriles from Csp2-Csp3 coupling between olefins and azobis was carried out. Key on this work was that the synthesis of allyl nitriles directly using olefin as a starting material was considered to be more efficient and economical than the alkyne, alkynyl carboxylic acid, or cinnamic acid used in previous works. Moreover, in this reaction, iodine served as the sole promoter, azobis served as a cyanation reagent, and N2 was the only nontoxic byproduct that could avoid the utilization of metal catalysts and virulent nitrile reagents and generation of toxic wastes. With an optimum condition in hand, more than 30 examples of desired products including aromatic and aliphatic nitriles have been synthesized in good to excellent yields. Based on control experiments and literature data, a plausible mechanism of cyanation was proposed.

7.
J Mol Histol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777993

RESUMO

Environmental changes can trigger endoplasmic reticulum (ER) stress and misfolded protein accumulation, potentially leading to pre-eclampsia (PE). Amyloid-ß (Aß) is a crucial misfolded protein that can overactivate autophagy. Our study assessed the expression of Aß1-42 and autophagic activity in PE placental tissues and trophoblasts under ER stress. Placental tissues were surgically collected from normal pregnant women (NP) and pregnant women with late-onset PE (LOPE) delivering through cesarean section. The expression levels of Aß1-42 were detected in both PE and NP placental tissues, as well as in tunicamycin (TM)-induced HTR-8/SVneo cells. Autophagy-related proteins, such as Beclin-1, the ratio of LC3-II to LC3-I, ATG5, and SQSTM1/p62 in the placental tissues and HTR-8/SVneo cells were measured by Western blot. The number and morphology of autophagosomes were observed using transmission electron microscopy (TEM). Potential targets associated with the unfolded protein response (UPR) in the placental tissues of NP and PE cases were screened using PCR Arrays. The misfolded protein was significantly upregulated in the PE group. In both PE placental tissues and TM-induced HTR-8/SVneo cells, not only was Aß1-42 upregulated, but also Beclin-1, ATG5, and LC3BII/I were significantly increased, accompanied by an increase in autophagosome count, while SQSTM1/P62 was downregulated. A total of 17 differentially expressed genes (DEGs) associated with the UPR were identified, among which elevated calnexin (CANX) was validated in the placenta from both PE and TM-induced HTR-8/SVneo cells. Autophagy is significantly upregulated in PE cases due to ER stress-induced Aß1-42 accumulation, likely mediated by autophagy-related proteins involved in the UPR.

8.
J Nanosci Nanotechnol ; 16(4): 3705-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451693

RESUMO

Homogeneously doped Yb3+ and Er3+ cerium-based coordination polymer (CP) microspheres have been successfully synthesized on a large scale through a simple solvothermal route with 2,5-pyridinedicarboxylic acid (2,5-H2PDC) as the organic linker. CeO2: Yb3+, Er3+ porous microspheres were obtained by annealing the corresponding CP microspheres at 600 °C for 4 h under atmospheric pressure. These as-prepared products were characterized by Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersion X-ray (EDX) spectroscopy, Thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis. The room temperature upconversion luminescent spectra of the as-prepared microspheres were carried out by 980 nm NIR light excitation. Interestingly, Yb3+ and Er3+ codoped CP microspheres give a single-band emission centered at 673 nm, while the CeO2: Yb3+, Er3+ microspheres give emission in green and red region, with red being the dominant emission. The emission intensity of the CeO2: Yb3+, Er3+ microspheres were much stronger than that of the Yb3+ and Er3+ codoped CP microspheres.

9.
Photochem Photobiol ; 91(4): 814-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25892403

RESUMO

A new hybrid membrane was prepared by a facile method based on a highly luminescent lanthanide coordination polymer and agarose. The soft membrane was characterized by FT-IR, PXRD, SEM and luminescence. It is found that the soft membrane is a highly selective and sensitive sensor, among 19 metal ion solutions of Fe(3+), Mg(2+), Li(+), Ca(2+), Zn(2+), Cu(2+), Ba(2+), Mn(2+), Ru(3+), Cr(3+), Ag(+), Sr(2+), Cd(2+), Na(+), Ni(2+), Pb(2+), Fe(2+), Hg(2+) and Ca(2+), only Fe(3+) quench the luminescence. The sensing results can be distinguished by the naked eye in daylight or by irradiation of a portable UV light at the scene. Mechanism studies reveal the sensing is due to the decomposition of the coordination polymer 1 which induced by slow permeation of Fe(3+). Further studies found anions of BO3(-), CO3(2-), H2PO4(-), Br(-), Cl(-), ClO4(-), H2PO4(-), I(-), IO3(-) and NO3(-) will not quench the luminescence of the hybrid membrane, which imply that other anions in water would not disturb the detection result.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA