Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Res Rev ; 28(2): 100-120, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391585

RESUMO

Energy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.

2.
Oncotarget ; 8(43): 73501-73515, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088722

RESUMO

In this study we addressed the questions whether an Atlantic brown algae extract (BAE) affects diet induced obesity in mice and which would be the primary targets and underlying key mechanisms. Male C57 BL/6 mice were fed a hypercaloric diet, referred to as high fat diet (HFD), supplemented with a freeze-dried aqueous BAE from Saccorhiza polyschides (5 %) for 8 months. Compared to the control group, dietary BAE supplementation significantly attenuated increase in body weight and fat mass. We observed apparent metabolic improvement including normalization of blood glucose, reduced plasma leptin, reduced fecal bile salt hydrolase activity with lower microbial production of toxic bile acid metabolites in the gut and increased systemic bile acid circulation in BAE-fed mice counteracting adverse effects of long term HFD feeding. Survival of mice receiving dietary BAE supplementation appeared slightly enhanced; however, median and maximal life spans as well as hepatic mTOR activation were not significantly different between BAE and control mice. We suggest that the beneficial metabolic effects of our BAE are at least partly mediated by alterations in gut microbiota associated with fermentation of indigestible polysaccharides that are major components of brown algae such as alginates and fucoidans. We moreover propose a multi-factorial mechanism that involves profound alterations in bile acid homeostasis, changes in intestinal and systemic glucose metabolism likely including increased intestinal gluconeogenesis, increased activity of the intestinally derived hormone GLP-1 contributing to promote systemic insulin sensitivity, and inhibition of α-amylase activity, which expectably limits dietary carbohydrate digestion and glucose release.

3.
Nutrition ; 30(2): 228-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24377457

RESUMO

OBJECTIVE: A high-fat diet (HFD) affects energy expenditure in laboratory rodents. R-α lipoic acid cyclodextrin (RALA-CD) complex is a stable form of lipoic acid (LA) and may improve energy expenditure. The aim of this study was to determine the effect of RALA-CD on energy expenditure and underlying molecular targets in female laboratory mice. METHODS: Female C57BL/6J mice were fed a HFD containing 0.1% LA for about 16 wk. The effects on energy expenditure, gene and protein expression were assessed using indirect calorimetry, real-time reverse transcriptase polymerase chain reaction, and Western blot, respectively. RESULTS: Supplementing mice with RALA-CD resulted in a significant increase in energy expenditure. However, both RALA per se (without γ-cyclodextrin) and S-α lipoic acid cyclodextrin did not significantly alter energy expenditure. Furthermore RALA-CD changed expression of genes encoding proteins centrally involved in energy metabolism. Transcriptional key regulators sirtuin 3 and peroxisome proliferator-activated receptor-γ, coactivator 1 alpha, as well as thyroid related enzyme type 2 iodothyronine deiodinase were up-regulated in brown adipose tissue (BAT) of RALA-CD-fed mice. Importantly, mRNA and/or protein expression of downstream effectors uncoupling protein (Ucp) 1 and 3 also were elevated in BAT from RALA-CD-supplemented mice. CONCLUSION: Overall, present data suggest that RALA-CD is a regulator of energy expenditure in laboratory mice.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Ácido Tióctico/farmacologia , gama-Ciclodextrinas/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Calorimetria Indireta , Dieta Hiperlipídica , Feminino , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1 , Proteína Desacopladora 3 , Regulação para Cima , Iodotironina Desiodinase Tipo II
4.
Age (Dordr) ; 35(4): 1205-17, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22767392

RESUMO

In this study we compared biomarkers of oxidative stress, stress response, antioxidant defence and inflammation between mice (n = 10 per group, female, 7 months old) with an accelerated (SAMP8) and a normal ageing phenotype (SAMR1). As compared to SAMR1 mice, SAMP8 mice exhibited higher levels of lipid peroxides and protein carbonyls as well as a lower activity of the proteasomal subunit ß-5. Furthermore, heme oxygenase-1 and paraoxonase-1 (PON-1) status was lower in SAMP8 mice indicating impaired stress response. Biomarkers of inflammation such as C-reactive protein and serum amyloid P were elevated in SAMP8 mice. Interestingly, impaired stress response and increased inflammation in SAMP8 mice were associated with elevated concentrations of ascorbic acid and α-tocopherol in the liver. An age-dependent increase in hepatic vitamin E and a decline in PON-1 gene expression were also observed in aged compared to young C57BL/6 mice.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Inflamação/metabolismo , Estresse Oxidativo/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA