RESUMO
Adaptation to the environment and extraction of energy are essential for survival. Some species have found niches and specialized in using a particular source of energy, whereas others-including humans and several other mammals-have developed a high degree of flexibility1. A lot is known about the general metabolic fates of different substrates but we still lack a detailed mechanistic understanding of how cells adapt in their use of basic nutrients2. Here we show that the closely related fasting/starvation-induced forkhead transcription factors FOXK1 and FOXK2 induce aerobic glycolysis by upregulating the enzymatic machinery required for this (for example, hexokinase-2, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase), while at the same time suppressing further oxidation of pyruvate in the mitochondria by increasing the activity of pyruvate dehydrogenase kinases 1 and 4. Together with suppression of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 this leads to increased phosphorylation of the E1α regulatory subunit of the pyruvate dehydrogenase complex, which in turn inhibits further oxidation of pyruvate in the mitochondria-instead, pyruvate is reduced to lactate. Suppression of FOXK1 and FOXK2 induce the opposite phenotype. Both in vitro and in vivo experiments, including studies of primary human cells, show how FOXK1 and/or FOXK2 are likely to act as important regulators that reprogram cellular metabolism to induce aerobic glycolysis.
Assuntos
Aerobiose , Fatores de Transcrição Forkhead/metabolismo , Glicólise , Células 3T3 , Animais , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Humanos , Ácido Láctico/biossíntese , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oxirredução , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismoRESUMO
BACKGROUND: Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE: To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS: Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS: Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS: SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.
Assuntos
Proteínas de Homeodomínio , Ataxias Espinocerebelares , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Homeodomínio/genética , Linhagem , Tomografia por Emissão de Pósitrons , Disautonomias Primárias/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Suécia , Expansão das Repetições de Trinucleotídeos/genéticaRESUMO
BACKGROUND: We sought to analyze, in well-defined clinical setting, the first 100 patients treated at the intraoperative MRI (iMRI) hybrid surgical theatre at our facility in a population-based setting to evaluate which pathologies are best approached with iMRI assisted surgeries, as this is not yet clearly defined. METHODS: Patients undergoing surgery in the 3T iMRI hybrid surgical theatre at our neurosurgical department between December 2017 to May 2021 were included after informed consent. Demographic, clinical, surgical, histological, radiological and outcome parameters, as well as variables related to iMRI, were retrospectively collected and analyzed. Patients were subdivided into adult and pediatric cohorts. RESULTS: Various neurosurgical procedures were performed; resection of tumors and epileptic foci, endoscopic skull base procedures including pituitary lesions, deep brain stimulation (DBS) and laser interstitial thermal therapy (LITT). In total, 41 patients were pediatric. An iMRI scan was carried out in 96% of cases and led to continuation of surgery in 50% of cases, mainly due to visualized remaining pathological tissue (95.2%). Median time to iMRI from intubation was 280 min and median total duration of surgery was 445 min. The majority of patients experienced no postoperative complications (70%), 13 patients suffered permanent postoperative deficits, predominantly visual. CONCLUSION: Herein, we demonstrate the first 100 patients undergoing neurosurgery aided by iMRI at our facility since introduction. Indications for surgery differed between pediatric and adult patients. The iMRI was utilized for tumor surgeries, particularly adult low-grade gliomas and pediatric tumors, as well as for epilepsy surgery and DBS. In this heterogenous population, iMRI led to continuation of surgery in 50%. To establish the benefit in maximizing the extent of resection in these brain pathologies future studies are recommended. CLINICAL TRIAL NUMBER: Not applicable.
Assuntos
Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos , Humanos , Feminino , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Masculino , Criança , Imageamento por Ressonância Magnética/métodos , Adolescente , Procedimentos Neurocirúrgicos/métodos , Idoso , Adulto Jovem , Resultado do Tratamento , Pré-Escolar , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Monitorização Intraoperatória/métodosRESUMO
The amount of data available from genomic medicine has revolutionized the approach to identify the determinants underlying many rare diseases. The task of confirming a genotype-phenotype causality for a patient affected with a rare genetic disease is often challenging. In this context, the establishment of the Matchmaker Exchange (MME) network has assumed a pivotal role in bridging heterogeneous patient information stored on different medical and research servers. MME has made it possible to solve rare disease cases by "matching" the genotypic and phenotypic characteristics of a patient of interest with patient data available at other clinical facilities participating in the network. Here, we present PatientMatcher (https://github.com/Clinical-Genomics/patientMatcher), an open-source Python and MongoDB-based software solution developed by Clinical Genomics facility at the Science for Life Laboratory in Stockholm. PatientMatcher is designed as a standalone MME server, but can easily communicate via REST API with external applications managing genetic analyses and patient data. The MME node is being implemented in clinical routine in collaboration with the Genomic Medicine Center Karolinska at the Karolinska University Hospital. PatientMatcher is written to implement the MME API and provides several customizable settings, including a custom-fit similarity score algorithm and adjustable matching results notifications.
Assuntos
Doenças Raras , Doenças não Diagnosticadas , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Disseminação de Informação/métodos , Doenças Raras/diagnóstico , Doenças Raras/genética , SoftwareRESUMO
PURPOSE: Individuals with intellectual disability (ID) and/or neurodevelopment disorders (NDDs) are currently investigated with several different approaches in clinical genetic diagnostics. METHODS: We compared the results from 3 diagnostic pipelines in patients with ID/NDD: genome sequencing (GS) first (N = 100), GS as a secondary test (N = 129), or chromosomal microarray (CMA) with or without FMR1 analysis (N = 421). RESULTS: The diagnostic yield was 35% (GS-first), 26% (GS as a secondary test), and 11% (CMA/FMR1). Notably, the age of diagnosis was delayed by 1 year when GS was performed as a secondary test and the cost per diagnosed individual was 36% lower with GS first than with CMA/FMR1. Furthermore, 91% of those with a negative result after CMA/FMR1 analysis (338 individuals) have not yet been referred for additional genetic testing and remain undiagnosed. CONCLUSION: Our findings strongly suggest that genome analysis outperforms other testing strategies and should replace traditional CMA and FMR1 analysis as a first-line genetic test in individuals with ID/NDD. GS is a sensitive, time- and cost-effective method that results in a confirmed molecular diagnosis in 35% of all referred patients.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiências do Desenvolvimento/genética , Testes Genéticos/métodos , Análise em Microsséries , Transtornos do Neurodesenvolvimento/genética , Proteína do X Frágil da Deficiência Intelectual/genéticaRESUMO
Field-theory simulation by the complex Langevin method offers an alternative to conventional sampling techniques for exploring the forces driving biomolecular liquid-liquid phase separation. Such simulations have recently been used to study several polyampholyte systems. Here, we formulate a field theory corresponding to the hydrophobic/polar (HP) lattice protein model, with finite same-site repulsion and nearest-neighbor attraction between HH bead pairs. By direct comparison with particle-based Monte Carlo simulations, we show that complex Langevin sampling of the field theory reproduces the thermodynamic properties of the HP model only if the same-site repulsion is not too strong. Unfortunately, the repulsion has to be taken weaker than what is needed to prevent condensed droplets from assuming an artificially compact shape. Analysis of a minimal and analytically solvable toy model hints that the sampling problems caused by repulsive interaction may stem from loss of ergodicity.
Assuntos
Proteínas/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , TermodinâmicaRESUMO
Complex chromosomal rearrangements (CCRs) are rearrangements involving more than two chromosomes or more than two breakpoints. Whole genome sequencing (WGS) allows for outstanding high resolution characterization on the nucleotide level in unique sequences of such rearrangements, but problems remain for mapping breakpoints in repetitive regions of the genome, which are known to be prone to rearrangements. Hence, multiple complementary WGS experiments are sometimes needed to solve the structures of CCRs. We have studied three individuals with CCRs: Case 1 and Case 2 presented with de novo karyotypically balanced, complex interchromosomal rearrangements (46,XX,t(2;8;15)(q35;q24.1;q22) and 46,XY,t(1;10;5)(q32;p12;q31)), and Case 3 presented with a de novo, extremely complex intrachromosomal rearrangement on chromosome 1. Molecular cytogenetic investigation revealed cryptic deletions in the breakpoints of chromosome 2 and 8 in Case 1, and on chromosome 10 in Case 2, explaining their clinical symptoms. In Case 3, 26 breakpoints were identified using WGS, disrupting five known disease genes. All rearrangements were subsequently analyzed using optical maps, linked-read WGS, and short-read WGS. In conclusion, we present a case series of three unique de novo CCRs where we by combining the results from the different technologies fully solved the structure of each rearrangement. The power in combining short-read WGS with long-molecule sequencing or optical mapping in these unique de novo CCRs in a clinical setting is demonstrated.
Assuntos
Cromossomos/genética , Rearranjo Gênico/genética , Variação Estrutural do Genoma/genética , Mapeamento Cromossômico/métodos , Feminino , Humanos , Masculino , Sequenciamento Completo do Genoma/métodosRESUMO
Spastic ataxias are rare neurogenetic disorders involving spinocerebellar and pyramidal tracts. Many genes are involved. Among them, CAPN1, when mutated, is responsible for a complex inherited form of spastic paraplegia (SPG76). We report the largest published series of 21 novel patients with nine new CAPN1 disease-causing variants and their clinical characteristics from two European university hospitals (Paris and Stockholm). After a formal clinical examination, causative variants were identified by next-generation sequencing and confirmed by Sanger sequencing. CAPN1 variants are a rare cause (~ 1.4%) of young-adult-onset spastic ataxia; however, together with all published cases, they allowed us to better describe the clinical and genetic spectra of this form. Truncating variants are the most frequent, and missense variants lead to earlier age at onset in favor of an additional deleterious effect. Cerebellar ataxia with cerebellar atrophy, dysarthria and lower limb weakness are often associated with spasticity. We also suggest that cognitive impairment and depression should be assessed specifically in the follow-up of SPG76 cases.
Assuntos
Calpaína/genética , Deficiência Intelectual/genética , Espasticidade Muscular/genética , Mutação/genética , Atrofia Óptica/genética , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Adulto , Idade de Início , Ataxia Cerebelar/genética , Criança , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Espasticidade Muscular/diagnóstico , Atrofia Óptica/diagnóstico , Linhagem , Fenótipo , Ataxias Espinocerebelares/diagnóstico , Adulto JovemRESUMO
Novel sequences (NSs), not present in the human reference genome, are abundant and remain largely unexplored. Here, we utilize de novo assembly to study NS in 1,000 Swedish individuals first sequenced as part of the SweGen project revealing a total of 46 Mb in 61,044 distinct contigs of sequences not present in GRCh38. The contigs were aligned to recently published catalogs of Icelandic and Pan-African NSs, as well as the chimpanzee genome, revealing a great diversity of shared sequences. Analyzing the positioning of NS across the chimpanzee genome, we find that 2,807 NS align confidently within 143 chimpanzee orthologs of human genes. Aligning the whole genome sequencing data to the chimpanzee genome, we discover ancestral NS common throughout the Swedish population. The NSs were searched for repeats and repeat elements: revealing a majority of repetitive sequence (56%), and enrichment of simple repeats (28%) and satellites (15%). Lastly, we align the unmappable reads of a subset of the thousand genomes data to our collection of NS, as well as the previously published Pan-African NS: revealing that both the Swedish and Pan-African NS are widespread, and that the Swedish NSs are largely a subset of the Pan-African NS. Overall, these results highlight the importance of creating a more diverse reference genome and illustrate that significant amounts of the NS may be of ancestral origin.
Assuntos
Variação Genética , Genoma Humano , Animais , Humanos , Pan troglodytes/genética , Suécia , Sequenciamento Completo do GenomaRESUMO
Chromoanagenesis is a genomic event responsible for the formation of complex structural chromosomal rearrangements (CCRs). Germline chromoanagenesis is rare and the majority of reported cases are associated with an affected phenotype. Here, we report a healthy female carrying two de novo CCRs involving chromosomes 4, 19, 21 and X and chromosomes 7 and 11, respectively, with a total of 137 breakpoint junctions (BPJs). We characterized the CCRs using a hybrid-sequencing approach, combining short-read sequencing, nanopore sequencing, and optical mapping. The results were validated using multiple cytogenetic methods, including fluorescence in situ hybridization, spectral karyotyping, and Sanger sequencing. We identified 137 BPJs, which to our knowledge is the highest number of reported breakpoint junctions in germline chromoanagenesis. We also performed a statistical assessment of the positioning of the breakpoints, revealing a significant enrichment of BPJ-affecting genes (96 intragenic BPJs, 26 genes, p < 0.0001), indicating that the CCRs formed during active transcription of these genes. In addition, we find that the DNA fragments are unevenly and non-randomly distributed across the derivative chromosomes indicating a multistep process of scattering and re-joining of DNA fragments. In summary, we report a new maximum number of BPJs (137) in germline chromoanagenesis. We also show that a hybrid sequencing approach is necessary for the correct characterization of complex CCRs. Through in-depth statistical assessment, it was found that the CCRs most likely was formed through an event resembling chromoplexy-a catastrophic event caused by erroneous transcription factor binding.
Assuntos
Quebra Cromossômica , Rearranjo Gênico/genética , Translocação Genética/genética , Cromossomos/genética , Análise Citogenética , Feminino , Humanos , Hibridização in Situ Fluorescente , Sequenciamento Completo do GenomaRESUMO
Severe congenital neutropenia (SCN) of autosomal recessive inheritance, also known as Kostmann disease, is characterised by a lack of neutrophils and a propensity for life-threatening infections. Using whole-exome sequencing, we identified homozygous JAGN1 mutations (p.Gly14Ser and p.Glu21Asp) in three patients with Kostmann-like SCN, thus confirming the recent attribution of JAGN1 mutations to SCN. Using the human promyelocytic cell line HL-60 as a model, we found that overexpression of patient-derived JAGN1 mutants, but not silencing of JAGN1, augmented cell death in response to the pro-apoptotic stimuli, etoposide, staurosporine, and thapsigargin. Furthermore, cells expressing mutant JAGN1 were remarkably susceptible to agonists that normally trigger degranulation and succumbed to a calcium-dependent cell death programme. This mode of cell death was completely prevented by pharmacological inhibition of calpain but unaffected by caspase inhibition. In conclusion, our results confirmed the association between JAGN1 mutations and SCN and showed that SCN-associated JAGN1 mutations unleash a calcium- and calpain-dependent cell death in myeloid cells.
Assuntos
Calpaína/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Proteínas de Membrana/genética , Células Mieloides/metabolismo , Neutropenia/congênito , Apoptose , Cálcio/metabolismo , Morte Celular , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Células HL-60 , Humanos , Proteínas de Membrana/metabolismo , Células Mieloides/citologia , Células Mieloides/patologia , Neutropenia/genética , Neutropenia/metabolismo , Neutropenia/patologia , Mutação PuntualRESUMO
Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.
Assuntos
Doenças do Desenvolvimento Ósseo/genética , Ciliopatias/genética , Predisposição Genética para Doença , Isoformas de Proteínas/genética , Adulto , Idoso , Doenças do Desenvolvimento Ósseo/epidemiologia , Doenças do Desenvolvimento Ósseo/patologia , Ciliopatias/epidemiologia , Ciliopatias/patologia , Dineínas do Citoplasma/genética , Proteínas do Citoesqueleto/genética , Feminino , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Sequenciamento Completo do GenomaRESUMO
Computer simulation can provide valuable insight into the forces driving biomolecular liquid-liquid phase separation. However, the simulated systems have a limited size, which makes it important to minimize and control finite-size effects. Here, using a phenomenological free-energy ansatz, we investigate how the single-phase densities observed in a canonical system under coexistence conditions depend on the system size and the total density. We compare the theoretical expectations with results from Monte Carlo simulations based on a simple hydrophobic/polar protein model. We consider both cubic systems with spherical droplets and elongated systems with slab-like droplets. The results presented suggest that the slab simulation method greatly facilitates the estimation of the coexistence densities in the large-system limit.
RESUMO
Motorized rotation mounts and stages are versatile instruments that introduce computer control to optical systems, enabling automation and scanning actions. They can be used for intensity control, position adjustments, etc. However, these rotation mounts come with a hefty price tag, and this limits their use. This work shows how to build two different types of motorized rotation mounts for $1^{\prime \prime}$ optics, using a 3D printer and off-the-shelf components. The first is intended for reflective elements, such as mirrors and gratings, and the second for transmissive elements, such as polarizers and retarders. We evaluate and compare their performance to commercial systems based on velocity, resolution, precision, backlash, and axis wobble. Also, we investigate the angular stability using Allan variance analysis. The results show that our mounts perform similarly to systems costing as much as $\$ 2500\,\rm USD $, while also being quick to build and costing less than $\$ 220\,\rm USD$. As a proof of concept, we show how to control lasers used in an optical tweezers and Raman spectroscopy setup. When used for this, the 3D printed motorized rotational mounts provide intensity control with a resolution of 0.03 percentage points or better.
RESUMO
Clustered copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) are often reported as germline chromothripsis. However, such cases might need further investigations by massive parallel whole genome sequencing (WGS) in order to accurately define the underlying complex rearrangement, predict the occurrence mechanisms and identify additional complexities. Here, we utilized WGS to delineate the rearrangement structure of 21 clustered CNV carriers first investigated by CMA and identified a total of 83 breakpoint junctions (BPJs). The rearrangements were further sub-classified depending on the patterns observed: I) Cases with only deletions (n = 8) often had additional structural rearrangements, such as insertions and inversions typical to chromothripsis; II) cases with only duplications (n = 7) or III) combinations of deletions and duplications (n = 6) demonstrated mostly interspersed duplications and BPJs enriched with microhomology. In two cases the rearrangement mutational signatures indicated both a breakage-fusion-bridge cycle process and haltered formation of a ring chromosome. Finally, we observed two cases with Alu- and LINE-mediated rearrangements as well as two unrelated individuals with seemingly identical clustered CNVs on 2p25.3, possibly a rare European founder rearrangement. In conclusion, through detailed characterization of the derivative chromosomes we show that multiple mechanisms are likely involved in the formation of clustered CNVs and add further evidence for chromoanagenesis mechanisms in both "simple" and highly complex chromosomal rearrangements. Finally, WGS characterization adds positional information, important for a correct clinical interpretation and deciphering mechanisms involved in the formation of these rearrangements.
Assuntos
Variações do Número de Cópias de DNA , Replicação do DNA/genética , Elementos Alu , Pontos de Quebra do Cromossomo , Cromotripsia , Rearranjo Gênico , Genoma Humano , Humanos , Elementos Nucleotídeos Longos e Dispersos , Análise de Sequência com Séries de Oligonucleotídeos , Sequenciamento Completo do GenomaRESUMO
Multiple primary cancers, defined as three or more primary tumours, are rare, and there are few genetic studies concerning them. There is a need for increased knowledge on the heritability of multiple primary cancers and genotype-phenotype correlations. We have performed whole-genome/exome sequencing (WGS/WES) in ten individuals with three or more primary tumours, with no previous findings on standard clinical genetic investigations. In one individual with a clinical diagnosis of MEN1, a likely pathogenic cryptic splice site variant was detected in the MEN1 gene. The variant (c.654C > A) is synonymous but we showed in a cDNA analysis that it affects splicing and leads to a frameshift, with the theoretical new amino acid sequence p.(Gly219Glufs*13). In one individual with metachronous colorectal cancers, ovarian cancer, endometrial cancer and chronic lymphocytic leukaemia, we found a likely pathogenic variant in the MLH1 gene (c.27G > A), and two risk factor variants in the genes CHEK2 and HOXB13. The MLH1 variant is synonymous but has previously been shown to be associated to constitutional low-grade hypermethylation of the MLH1 promoter, and segregates with disease in families with colorectal and endometrial cancer. No pathogenic single nucleotide or structural variants were detected in the remaining eight individuals in the study. The pathogenic variants found by WGS/WES were in genes already sequenced by Sanger sequencing and WES in the clinic, without any findings. We conclude that, in individuals with an unequivocal clinical diagnosis of a specific hereditary cancer syndrome, where standard clinical testing failed to detect a causative variant, re-analysis may lead to a diagnosis.
RESUMO
BACKGROUND: DNA damage accumulates over the course of cancer development. The often-substantial amount of somatic mutations in cancer poses a challenge to traditional methods to characterize tumors based on driver mutations. However, advances in machine learning technology can take advantage of this substantial amount of data. RESULTS: We developed a command line interface python package, pyCancerSig, to perform sample profiling by integrating single nucleotide variation (SNV), structural variation (SV) and microsatellite instability (MSI) profiles into a unified profile. It also provides a command to decipher underlying cancer processes, employing an unsupervised learning technique, Non-negative Matrix Factorization, and a command to visualize the results. The package accepts common standard file formats (vcf, bam). The program was evaluated using a cohort of breast- and colorectal cancer from The Cancer Genome Atlas project (TCGA). The result showed that by integrating multiple mutations modes, the tool can correctly identify cases with known clear mutational signatures and can strengthen signatures in cases with unclear signal from an SNV-only profile. The software package is available at https://github.com/jessada/pyCancerSig. CONCLUSIONS: pyCancerSig has demonstrated its capability in identifying known and unknown cancer processes, and at the same time, illuminates the association within and between the mutation modes.
Assuntos
Mutação , Neoplasias/genética , Software , Neoplasias da Mama/genética , Estudos de Coortes , Neoplasias Colorretais/genética , Feminino , Variação Genética , Genoma Humano , Humanos , Aprendizado de Máquina , Instabilidade de Microssatélites , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Exome and genome sequencing is becoming the method of choice for rare disease diagnostics. One of the key challenges remaining is distinguishing the disease causing variants from the benign background variation. After analysis and annotation of the sequencing data there are typically thousands of candidate variants requiring further investigation. One of the most effective and least biased ways to reduce this number is to assess the rarity of a variant in any population. Currently, there are a number of reliable sources of information for major population frequencies when considering single nucleotide variants (SNVs) and small insertion and deletions (INDELs), with gnomAD as the most prominent public resource available. However, local variation or frequencies in sub-populations may be underrepresented in these public resources. In contrast, for structural variation (SV), the background frequency in the general population is more or less unknown mostly due to challenges in calling SVs in a consistent way. Keeping track of local variation is one way to overcome these problems and significantly reduce the number of potential disease causing variants retained for manual inspection, both for SNVs and SVs. RESULTS: Here, we present loqusdb, a tool to solve the challenge of keeping track of any type of variant observations from genome sequencing data. Loqusdb was designed to handle a large flow of samples and unlike other solutions, samples can be added continuously to the database without rebuilding it, facilitating improvements and additions. We assessed the added value of a local observations database using 98 samples annotated with information from a background of 888 unrelated individuals. CONCLUSIONS: We show both how powerful SV analysis can be when filtering for population frequencies and how the number of apparently rare SNVs/INDELs can be reduced by adding local population information even after annotating the data with other large frequency databases, such as gnomAD. In conclusion, we show that a local frequency database is an attractive, and a necessary addition to the publicly available databases that facilitate the analysis of exome and genome data in a clinical setting.
Assuntos
Variação Genética , Interface Usuário-Computador , Bases de Dados Genéticas , Humanos , Mutação INDEL , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Cytogenetically detected inversions are generally assumed to be copy number and phenotypically neutral events. While nonallelic homologous recombination is thought to play a major role, recent data suggest the involvement of other molecular mechanisms in inversion formation. Using a combination of short-read whole-genome sequencing (WGS), 10X Genomics Chromium WGS, droplet digital polymerase chain reaction and array comparative genomic hybridization we investigated the genomic structure of 18 large unique cytogenetically detected chromosomal inversions and achieved nucleotide resolution of at least one chromosomal inversion junction for 13/18 (72%). Surprisingly, we observed that seemingly copy number neutral inversions can be accompanied by a copy-number gain of up to 350 kb and local genomic complexities (3/18, 17%). In the resolved inversions, the mutational signatures are consistent with nonhomologous end-joining (8/13, 62%) or microhomology-mediated break-induced replication (5/13, 38%). Our study indicates that short-read 30x coverage WGS can detect a substantial fraction of chromosomal inversions. Moreover, replication-based mechanisms are responsible for approximately 38% of those events leading to a significant proportion of inversions that are actually accompanied by additional copy-number variation potentially contributing to the overall phenotypic presentation of those patients.
Assuntos
Inversão Cromossômica , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Hibridização Genômica Comparativa , Feminino , Frequência do Gene , Haplótipos , Heterozigoto , Recombinação Homóloga , Humanos , Cariotipagem , Masculino , Linhagem , Sequenciamento Completo do GenomaRESUMO
This article emphasizes the role of the technological progress in changing the landscape of epilepsy surgery and provides a critical appraisal of robotic applications, laser interstitial thermal therapy, intraoperative imaging, wireless recording, new neuromodulation techniques, and high-intensity focused ultrasound. Specifically, (a) it relativizes the current hype in using robots for stereo-electroencephalography (SEEG) to increase the accuracy of depth electrode placement and save operating time; (b) discusses the drawback of laser interstitial thermal therapy (LITT) when it comes to the need for adequate histopathologic specimen and the fact that the concept of stereotactic disconnection is not new; (c) addresses the ratio between the benefits and expenditure of using intraoperative magnetic resonance imaging (MRI), that is, the high technical and personnel expertise needed that might restrict its use to centers with a high case load, including those unrelated to epilepsy; (d) soberly reviews the advantages, disadvantages, and future potentials of neuromodulation techniques with special emphasis on the differences between closed and open-loop systems; and (e) provides a critical outlook on the clinical implications of focused ultrasound, wireless recording, and multipurpose electrodes that are already on the horizon. This outlook shows that although current ultrasonic systems do have some limitations in delivering the acoustic energy, further advance of this technique may lead to novel treatment paradigms. Furthermore, it highlights that new data streams from multipurpose electrodes and wireless transmission of intracranial recordings will become available soon once some critical developments will be achieved such as electrode fidelity, data processing and storage, heat conduction as well as rechargeable technology. A better understanding of modern epilepsy surgery will help to demystify epilepsy surgery for the patients and the treating physicians and thereby reduce the surgical treatment gap.