Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Microb Ecol ; 78(4): 781-791, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30989355

RESUMO

The microbiota in mosquito breeding waters can affect ovipositing mosquitoes, have effects on larval development, and can modify adult mosquito-gut bacterial composition. This, in turn, can affect transmission of human pathogens such as malaria parasites. Here, we explore the microbiota of four breeding sites for Anopheles darlingi, the most important malaria vector in Latin America. The sites are located in Manaus in the Amazon basin in Brazil, an area of active malaria transmission. Using 16S rRNA gene sequencing by MiSeq, we found that all sites were dominated by Proteobacteria and Firmicutes and that 94% of the total number of reads belonged to 36 operational taxonomic units (OTUs) identified in all sites. Of these, the most common OTUs belonged to Escherichia/Shigella, Staphylococcus, and Pseudomonas. Of the remaining 6% of the reads, the OTUs found to differentiate between the four sites belonged to the orders Burkholderiales, Actinomycetales, and Clostridiales. We conclude that An. darlingi can develop in breeding waters with different surface-water bacteria, but that the common microbiota found in all breeding sites might indicate or contribute to a suitable habitat for this important malaria vector.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Bactérias/isolamento & purificação , Água Doce/microbiologia , Microbiota , Animais , Bactérias/classificação , Brasil , Ecossistema , Malária , Mosquitos Vetores/fisiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Reprodução
2.
Int J Syst Evol Microbiol ; 65(Pt 2): 444-451, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25385997

RESUMO

Two Gram-negative, rod-shaped strains, T2.1(T) and W5.1.1(T), isolated from larvae of the mosquito Anopheles arabiensis, were investigated using a polyphasic approach. On the basis of 16S rRNA gene sequence similarity studies, strains T2.1(T) and W5.1.1(T) were shown to belong to the genus Thorsellia, both showing 97.8 % similarity to the type strain of Thorsellia anophelis, with 98.1 % similarity to each other. Chemotaxonomic data supported the allocation of the strains to the genus Thorsellia: their major fatty acids were C18 : 1ω7c, C16 : 0 and C14 : 0 and they harboured a ubiquinone Q-8 quinone system and a polyamine pattern with the major compound 1,3-diaminopropane. Qualitative and quantitative differences in their polar lipid profiles distinguished strains T2.1(T) and W5.1.1(T) from each other and from T. anophelis. Average nucleotide identity (ANI), DNA-DNA hybridization, multilocus sequence analysis (MLSA) as well as physiological and biochemical tests allowed T2.1(T) and W5.1.1(T) to be distinguished both genotypically and phenotypically from each other and from the type strain of T. anophelis. Thus, we propose that these isolates represent two novel species of the genus Thorsellia, named Thorsellia kenyensis sp. nov. (type strain T2.1(T) = CCM 8545(T) = LMG 28483(T) = CIP 110829(T)) and Thorsellia kandunguensis sp. nov. (type strain W5.1.1(T) = LMG 28213(T) = CIP 110794(T)). Furthermore, phylogenetic analysis based on nearly full-length 16S rRNA gene sequences showed that the genus Thorsellia forms a separate branch, distinct from the families Enterobacteriaceae, Pasteurellaceae and Orbaceae. As a consequence, a new family Thorselliaceae fam. nov. is proposed. An emended description of Thorsellia anophelis is also provided.


Assuntos
Anopheles/microbiologia , Enterobacteriaceae/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Diaminas/química , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Ácidos Graxos/química , Genes Bacterianos , Quênia , Larva/microbiologia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Poliaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
3.
Parasit Vectors ; 16(1): 156, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127597

RESUMO

BACKGROUND: The neotropical anopheline mosquito Anopheles darlingi is a major malaria vector in the Americas. Studies on mosquito-associated microbiota have shown that symbiotic bacteria play a major role in host biology. Mosquitoes acquire and transmit microorganisms over their life cycle. Specifically, the microbiota of immature forms is largely acquired from their aquatic environment. Therefore, our study aimed to describe the microbial communities associated with An. darlingi immature forms and their breeding sites in the Coari municipality, Brazilian Amazon. METHODS: Larvae, pupae, and breeding water were collected in two different geographical locations. Samples were submitted for DNA extraction and high-throughput 16S rRNA gene sequencing was conducted. Microbial ecology analyses were performed to explore and compare the bacterial profiles of An. darlingi and their aquatic habitats. RESULTS: We found lower richness and diversity in An. darlingi microbiota than in water samples, which suggests that larvae are colonized by a subset of the bacterial community present in their breeding sites. Moreover, the bacterial community composition of the immature mosquitoes and their breeding water differed according to their collection sites, i.e., the microbiota associated with An. darlingi reflected that in the aquatic habitats where they developed. The three most abundant bacterial classes across the An. darlingi samples were Betaproteobacteria, Clostridia, and Gammaproteobacteria, while across the water samples they were Gammaproteobacteria, Bacilli, and Alphaproteobacteria. CONCLUSIONS: Our findings reinforce the current evidence that the environment strongly shapes the composition and diversity of mosquito microbiota. A better understanding of mosquito-microbe interactions will contribute to identifying microbial candidates impacting host fitness and disease transmission.


Assuntos
Anopheles , Malária , Microbiota , Animais , Anopheles/genética , Brasil , Mosquitos Vetores , RNA Ribossômico 16S , Larva , Bactérias , Água
4.
Sci Rep ; 10(1): 3352, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099004

RESUMO

The midgut microbiota of disease vectors plays a critical role in the successful transmission of human pathogens. The environment influences the microbiota composition; however, the relative mosquito-species contribution has not been rigorously disentangled from the environmental contribution to the microbiota structure. Also, the extent to which the microbiota of the adult sugar food source and larval water can predict that of the adult midgut and vice versa is not fully understood. To address these relationships, larvae and adults of Anopheles gambiae and Aedes albopictus were either reared separately or in a co-rearing system, whereby aquatic and adult stages of both species shared the larval water and sugar food source, respectively. Despite being reared under identical conditions, clear intra- and interspecies differences in midgut microbiota-composition were observed across seven cohorts, collected at different time points over a period of eight months. Fitting a linear model separately for each OTU in the mosquito midgut showed that two OTUs significantly differed between the midguts of the two mosquito species. We also show an effect for the sugar food source and larval water on the adult midgut microbiota. Our findings suggest that the mosquito midgut microbiota is highly dynamic and controlled by multiple factors.


Assuntos
Aedes/genética , Anopheles/genética , Bactérias/genética , Microbioma Gastrointestinal/genética , Aedes/microbiologia , Animais , Anopheles/microbiologia , Bactérias/classificação , Técnicas de Cocultura , Humanos , Larva/genética , Larva/microbiologia , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , RNA Ribossômico 16S/genética
5.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617987

RESUMO

Water-storage containers are common in households where access to water is scarce and often act as breeding sites for vector mosquitoes. Bacteria in these containers may be important for attracting or repelling ovipositing mosquitoes. We hypothesized that bacterial community composition in water-storage containers would represent either inhibitory or suitable environmental conditions for mosquito larvae. To investigate this, we characterized the bacterial community composition in water-storage containers and correlated these communities to Aedes and Anopheles larval densities. Water samples were collected over two years from 13 containers in an Indian village and analyzed by high throughput 16S rRNA gene amplicon sequencing. Comparisons of bacterial community composition between water with and without mosquito larvae showed that Xanthomonadaceae, Comamonadaceae and Burkholderiaceae were more common (P < 0.05) in absence of larvae, while Lachnospiraceae, Synechococcaceae, Alcaligenaceae and Cryomorphaceae were more common (P < 0.05) in presence of larvae. Indicator analysis identified operational taxonomic units designated as CL500-29 marine group (Acidimicrobiaceae) and FukuN101 (Microbacteriaceae) for absence and presence of larvae, respectively. These results contribute to the understanding of which bacteria, directly or indirectly, can be linked to absence or presence of mosquitoes around households and set the basis for potential measures to be taken against these vector mosquitoes.


Assuntos
Aedes/microbiologia , Anopheles/microbiologia , Bactérias , Larva/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Mosquitos Vetores/microbiologia , RNA Ribossômico 16S/genética , Água , Microbiologia da Água
6.
Sci Rep ; 6: 22806, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26960555

RESUMO

The intolerable burden of malaria has for too long plagued humanity and the prospect of eradicating malaria is an optimistic, but reachable, target in the 21(st) century. However, extensive knowledge is needed about the spatial structure of mosquito populations in order to develop effective interventions against malaria transmission. We hypothesized that the microbiota associated with a mosquito reflects acquisition of bacteria in different environments. By analyzing the whole-body bacterial flora of An. gambiae mosquitoes from Burkina Faso by 16 S amplicon sequencing, we found that the different environments gave each mosquito a specific bacterial profile. In addition, the bacterial profiles provided precise and predicting information on the spatial dynamics of the mosquito population as a whole and showed that the mosquitoes formed clear local populations within a meta-population network. We believe that using microbiotas as proxies for population structures will greatly aid improving the performance of vector interventions around the world.


Assuntos
Anopheles/microbiologia , Bactérias/genética , Microbiota/genética , Animais , Bactérias/classificação , Burkina Faso , DNA Bacteriano/análise , Ecossistema , Feminino , Insetos Vetores , Masculino , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA