Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1844(10): 1835-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107665

RESUMO

JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP.

2.
Biochem Soc Trans ; 41(4): 1002-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863170

RESUMO

JAK (Janus kinase) 2 plays a critical role in signal transduction through several cytokine receptors. JAKs contain a typical tyrosine kinase domain preceded by a pseudokinase [JH2 (JAK homology 2)] domain which has been considered to be catalytically inactive. Identification of activating mutations in the JH2 domain of JAK2 as the major cause for polycythaemia vera and other MPNs (myeloproliferative neoplasms) demonstrate the critical regulatory function for this domain, but the underlying mechanisms have remained elusive. We have performed biochemical and functional analysis on the JH2 domain of JAK2. The results indicate that JH2 functions as an active protein kinase and phosphorylates two residues in JAK2 (Ser523 and Tyr570) that have been shown previously to be negative regulatory sites for JAK2 activity. The crystal structure of the JAK2 JH2 domain provides an explanation for the functional findings and shows that JH2 adopts a prototypical kinase fold, but binds MgATP through a non-canonical mode. The structure of the most prevalent pathogenic JH2 mutation V617F shows a high level of similarity to wild-type JH2. The most notable structural deviation is observed in the N-lobe αC-helix. The structural and biochemical data together with MD (molecular dynamics) simulations show that the V617F mutation rigidifies the αC-helix, which results in hyperactivation of the JH1 domain through an as yet unidentified mechanism. These results provide structural and functional insights into the normal and pathogenic function of the JH2 domain of JAK2.


Assuntos
Janus Quinase 2/metabolismo , Proteínas Quinases/metabolismo , Humanos , Janus Quinase 2/química , Janus Quinase 2/genética , Modelos Moleculares , Mutação , Fosforilação , Policitemia Vera/enzimologia , Conformação Proteica , Proteínas Quinases/química , Relação Estrutura-Atividade
3.
Anal Biochem ; 442(2): 213-22, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23891636

RESUMO

Förster resonance energy transfer (FRET) between the fluorescent ATP analogue 2'/3'-(N-methyl-anthraniloyl)-adenosine-5'-triphosphate (MANT-ATP) and enzymes is widely used to determine affinities for ATP-protein binding. However, in analysis of FRET fluorescence data, several important parameters are often ignored, resulting in poor accuracy of the calculated dissociation constant (Kd). In this study, we systematically analyze factors that interfere with Kd determination and describe methods for correction of primary and secondary inner filter effects that extend the use of the FRET method to higher MANT nucleotide concentrations. The interactions of the fluorescent nucleotide analogues MANT-ATP, MANT-ADP [2'/3'-O-(N-methylanthraniloyl) adenosine diphosphate], and MANT-AMP [2'/3'-O-(N-methylanthraniloyl) adenosine monophosphate] with the JAK2 tyrosine kinase domain are characterized. Taking all interfering factors into consideration, we found that JAK2 binds MANT-ATP tightly with a Kd of 15 to 25nM and excluded the presence of a second binding site. The affinity for MANT-ADP is also tight with a Kd of 50 to 80nM, whereas MANT-AMP does not bind. Titrations of JAK2 JH1 with nonhydrolyzable ATP analogue MANT-ATP-γ-S [2'/3'-O-(N-methylanthraniloyl) adenosine-5'-(thio)- triphosphate] yielded a Kd of 30 to 50nM. The methods demonstrated here are applicable to other enzyme-fluorophore combinations and are expected to help improve the analysis of steady-state FRET data in MANT nucleotide binding studies and to obtain more accurate results for the affinities of nucleotide binding proteins.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Transferência Ressonante de Energia de Fluorescência/métodos , Janus Quinase 2/metabolismo , ortoaminobenzoatos/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos , Janus Quinase 2/química , Ligação Proteica , Triptofano/química , Tirosina/química , ortoaminobenzoatos/química
4.
Nat Struct Mol Biol ; 18(9): 971-6, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21841788

RESUMO

Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling. Notably, different MPN mutations abrogated JH2 activity in cells, and in MPN (V617F) patient cells phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized mechanism to control basal activity and signaling of JAK2.


Assuntos
Citocinas/metabolismo , Janus Quinase 2/química , Transdução de Sinais , Sequência de Aminoácidos , Humanos , Janus Quinase 2/genética , Janus Quinase 2/fisiologia , Mutação , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA