Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(23): 237202, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932706

RESUMO

Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate ß-Li_{2}IrO_{3} is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of ß-Li_{2}IrO_{3} increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field H_{c} reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange Γ under pressure.

2.
Nature ; 485(7396): 82-5, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22522933

RESUMO

When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital. The hallmark of one-dimensional physics is a breaking up of the elementary electron into its separate degrees of freedom. The separation of the electron into independent quasi-particles that carry either spin (spinons) or charge (holons) was first observed fifteen years ago. Here we report observation of the separation of the orbital degree of freedom (orbiton) using resonant inelastic X-ray scattering on the one-dimensional Mott insulator Sr2CuO3. We resolve an orbiton separating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion in energy over momentum, of about 0.2 electronvolts, over nearly one Brillouin zone.

3.
Biochem Biophys Res Commun ; 493(1): 573-577, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28867194

RESUMO

Argpyrimidine (ARP) is an advanced glycation end product thought to be generated from a reaction between methylglyoxal and arginine residues in proteins. In this study, we observed marked accumulation of an approximately 56 kD protein, reactive to anti-ARP antibodies, in the red blood cells (RBCs) of some patients with refractory schizophrenia. This ARP-modified protein was purified from the blood of schizophrenic patients and identified as selenium binding protein 1 (SBP1) by LC-MS/MS. This is the first report of ARP-modified proteins accumulating in RBCs of patients with diseases involving carbonyl stress. We also observed high accumulation of ARP-modified SBP1 in the RBCs of patients with chronic kidney disease. Therefore, this modified protein may be a novel marker of carbonyl stress.


Assuntos
Eritrócitos/metabolismo , Ornitina/análogos & derivados , Carbonilação Proteica , Pirimidinas/sangue , Esquizofrenia/sangue , Esquizofrenia/epidemiologia , Proteínas de Ligação a Selênio/sangue , Biomarcadores , Feminino , Humanos , Japão/epidemiologia , Masculino , Ornitina/sangue , Prevalência , Reprodutibilidade dos Testes , Medição de Risco , Esquizofrenia/diagnóstico , Sensibilidade e Especificidade
4.
Phys Rev Lett ; 119(3): 037201, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28777603

RESUMO

We report a ^{35}Cl nuclear magnetic resonance study in the honeycomb lattice α-RuCl_{3}, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α-RuCl_{3} exhibits a magnetic-field-induced QSL. For fields larger than ∼10 T, a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ∼50 K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.

5.
Phys Rev Lett ; 116(4): 047202, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871354

RESUMO

Low-temperature neutron diffraction and NMR studies of field-induced phases in linarite are presented for magnetic fields H∥b axis. A two-step spin-flop transition is observed, as well as a transition transforming a helical magnetic ground state into an unusual magnetic phase with sine-wave-modulated moments ∥H. An effective J[over ˜]_{1}-J[over ˜]_{2} single-chain model with a magnetization-dependent frustration ratio α_{eff}=-J[over ˜]_{2}/J[over ˜]_{1} is proposed. The latter is governed by skew interchain couplings and shifted to the vicinity of the ferromagnetic critical point. It explains qualitatively the observation of a rich variety of exotic longitudinal collinear spin-density wave, SDW_{p}, states (9≥p≥2).

6.
NPJ Quantum Mater ; 8(1): 48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666238

RESUMO

Fifty years after Anderson's resonating valence-bond proposal, the spin-1/2 triangular-lattice Heisenberg antiferromagnet (TLHAF) remains the ultimate platform to explore highly entangled quantum spin states in proximity to magnetic order. Yb-based delafossites are ideal candidate TLHAF materials, which allow experimental access to the full range of applied in-plane magnetic fields. We perform a systematic neutron scattering study of CsYbSe2, first proving the Heisenberg character of the interactions and quantifying the second-neighbor coupling. We then measure the complex evolution of the excitation spectrum, finding extensive continuum features near the 120°-ordered state, throughout the 1/3-magnetization plateau and beyond this up to saturation. We perform cylinder matrix-product-state (MPS) calculations to obtain an unbiased numerical benchmark for the TLHAF and spectacular agreement with the experimental spectra. The measured and calculated longitudinal spectral functions reflect the role of multi-magnon bound and scattering states. These results provide valuable insight into unconventional field-induced spin excitations in frustrated quantum materials.

7.
J Neurophysiol ; 107(4): 1094-110, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22114163

RESUMO

We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features.


Assuntos
Orientação/fisiologia , Células Receptoras Sensoriais/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/citologia , Campos Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Anisotropia , Mapeamento Encefálico , Macaca mulatta/fisiologia , Dinâmica não Linear , Estimulação Luminosa/métodos , Psicofísica , Tempo de Reação , Filtro Sensorial/fisiologia , Análise Espectral , Estatística como Assunto , Córtex Visual/fisiologia
8.
Phys Rev Lett ; 109(7): 076401, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006387

RESUMO

We study the effects of opening the band gap on the double exchange ferromagnetism. Applying the density-matrix renormalization group method and an analytical expansion from the dimer limit to the one-dimensional double exchange model, we demonstrate for a relevant region of the exchange coupling that, in the weak dimerization regime, the Peierls gap opens in the fully spin-polarized conduction band without affecting its ferromagnetism, whereas in the strong dimerization regime, the ferromagnetism is destroyed, and the Mott gap opens instead, leading the system to the antiferromagnetic quasi-long-range order. An insulator version of double exchange ferromagnetism is thus established.

9.
Phys Rev Lett ; 109(11): 117207, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005673

RESUMO

Ca(2)Y(2)Cu(5)O(10) is built up from edge-shared CuO(4) plaquettes forming spin chains. From inelastic neutron scattering data we extract an in-chain nearest-neighbor exchange J(1)≈-170 K and the frustrating next-neighbor J(2)≈32 K interactions, both significantly larger than previous estimates. The ratio α=|J(2)/J(1)|=0.19±0.01 places the system close to the critical point α(c)=0.25 of the J(1)-J(2) chain but in the 1D ferromagnetic regime. We establish that the vicinity to criticality only marginally affects the dispersion and coherence of the spin-wave-like magnetic excitations but instead results in a dramatic T dependence of high-energy Zhang-Rice singlet excitation intensities.

10.
Rev Sci Instrum ; 93(3): 034703, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365006

RESUMO

In semiconductor device history, a trend is observed where narrowing and increasing the number of material layers improve device functionality, with diodes, transistors, thyristors, and superlattices following this trend. While superlattices promise unique functionality, they are not widely adopted due to a technology barrier, requiring advanced fabrication, such as molecular beam epitaxy and lattice-matched materials. Here, a method to design quantum devices using amorphous materials and physical vapor deposition is presented. It is shown that the multiplication gain M depends on the number of layers of the superlattice, N, as M = kN, with k as a factor indicating the efficiency of multiplication. This M is, however, a trade-off with transit time, which also depends on N. To demonstrate, photodetector devices are fabricated on Si, with the superlattice of Se and As2Se3, and characterized using current-voltage (I-V) and current-time (I-T) measurements. For superlattices with the total layer thicknesses of 200 nm and 2 µm, the results show that k200nm = 0.916 and k2µm = 0.384, respectively. The results confirm that the multiplication factor is related to the number of superlattice layers, showing the effectiveness of the design approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA