Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(16): e2207229, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670336

RESUMO

In this work, the mechanisms of radical generation on different functionalized graphene oxide (GO) conjugates under near-infrared (NIR) light irradiation are investigated. The GO conjugates are designed to understand how chemical functionalization can influence the generation of radicals. Both pristine and functionalized GO are irradiated by a NIR laser, and the production of different reactive oxygen species (ROS) is investigated using fluorimetry and electron paramagnetic resonance to describe the type of radicals present on the surface of GO. The mechanism of ROS formation involves a charge transfer from the material to the oxygen present in the media, via the production of superoxide and singlet oxygen. Cytotoxicity and effects of ROS generation are then evaluated using breast cancer cells, evidencing a concentration dependent cell death associated to the heat and ROS. The study provides new hints to understand the photogeneration of radicals on the surface of GO upon near infrared irradiation, as well as, to assess the impact on these radicals in the context of a combined drug delivery system and phototherapeutic approach. These discoveries open the way for a better control of phototherapy-based treatments employing graphene-based materials.

2.
Small ; 19(18): e2208227, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732906

RESUMO

Peritumoral brain invasion is the main target to cure glioblastoma. Chemoradiotherapy and targeted therapies fail to combat peritumoral relapse. Brain inaccessibility and tumor heterogeneity explain this failure, combined with overlooking the peritumor microenvironment. Reduce graphene oxide (rGO) provides a unique opportunity to modulate the local brain microenvironment. Multimodal graphene impacts are reported on glioblastoma cells in vitro but fail when translated in vivo because of low diffusion. This issue is solved by developing a new rGO formulation involving ultramixing during the functionalization with polyethyleneimine (PEI) leading to the formation of highly water-stable rGO-PEI. Wide mice brain diffusion and biocompatibility are demonstrated. Using an invasive GL261 model, an anti-invasive effect is observed. A major unexpected modification of the peritumoral area is also observed with the neutralization of gliosis. In vitro, mechanistic investigations are performed using primary astrocytes and cytokine array. The result suggests that direct contact of rGO-PEIUT neutralizes astrogliosis, decreasing several proinflammatory cytokines that would explain a bystander tumor anti-invasive effect. rGO also significantly downregulates several proinvasive/protumoral cytokines at the tumor cell level. The results open the way to a new microenvironment anti-invasive nanotherapy using a new graphene nanomaterial that is optimized for in vivo brain delivery.


Assuntos
Glioblastoma , Grafite , Animais , Camundongos , Glioblastoma/terapia , Citocinas , Encéfalo , Microambiente Tumoral
3.
Chemistry ; 29(31): e202300266, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36892563

RESUMO

Covalent functionalization of graphene oxide (GO) with boron dipyrromethenes (BODIPYs) was achieved through a facile synthesis, affording two different GO-BODIPY conjugates where the main difference lies in the nature of the spacer and the type of bonds between the two components. The use of a long but flexible spacer afforded strong electronic GO-BODIPY interactions in the ground state. This drastically altered the light absorption of the BODIPY structure and impeded its selective excitation. In contrast, the utilisation of a short, but rigid spacer based on boronic esters resulted in a perpendicular geometry of the phenyl boronic acid BODIPY (PBA-BODIPY) with respect to the GO plane, which enables only minor electronic GO-BODIPY interactions in the ground state. In this case, selective excitation of PBA-BODIPY was easily achieved, allowing to investigate the excited state interactions. A quantitative ultrafast energy transfer from PBA-BODIPY to GO was observed. Furthermore, due to the reversible dynamic nature of the covalent GO-PBA-BODIPY linkage, some PBA-BODIPY is free in solution and, hence, not quenched from GO. This resulted in a weak, but detectable fluorescence from the PBA-BODIPY that will allow to exploit GO-PBA-BODIPY for slow release and imaging purposes.

4.
Acc Chem Res ; 54(3): 731-743, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33319986

RESUMO

ConspectusMolecular assemblies have been widely applied to functional soft materials in a variety of fields. Liquid crystal is one of the representative molecular soft materials in which weak intermolecular interactions induce its dynamic molecular behavior under external stimuli, such as electric and magnetic fields, photoirradiation, and thermal treatment. It is important to understand molecular behavior and motion in the liquid-crystalline (LC) states at the picosecond level for further functionalization of liquid crystals and molecular assembled materials. For investigation of assembled structures of the materials on the nanometer scale, X-ray diffraction (XRD) measurements have been a powerful tool. Despite the dynamic nature of the assembled materials, however, time resolution of XRD is limited to millisecond due to the response speed of the detector, which hampered real-time observation of the dynamics of the molecular assembly. For further understanding of the dynamic behavior of functional molecules and improvement of performance for their applications, the insights of faster dynamics on the micro-, nano-, pico-, and even femtosecond time scales are required. In this context, the interdisciplinary approaches of the emerging fields of materials chemistry and ultrafast science will open up new aspects of molecular science and technology. These approaches may lead to more effective design of new functional materials, which enables us to control molecular behaviors and motions.The development of ultrashort pulsed X-ray and electron sources has resulted in the visualization of the key structural dynamics on the femto- to picosecond time scale not only in isolated molecules but also in assembled molecules, such as in the LC, crystal, and amorphous phases. We focus on ultrafast phenomena in molecular assemblies induced by photoexcitation. Ultrafast time-resolved electron diffraction measurements are sensitive to the molecular periodicity under photoexcitation, and thus the methodologies directly provide the ultrafast photoinduced molecular dynamic arrangements.In this Account, we describe ultrafast structural dynamics of molecules in the LC phases observed by time-resolved electron diffraction measurements. Photoinduced conformational changes of LC molecules is shown as the example, which is the first observation of LC molecule using time-resolved electron diffraction. It is important to understand the correlation between the conformational or configurational changes induced in a photoirradiated single molecule and the oriented collective motions of molecular assemblies induced by intermolecular interaction. We also show observation of collective motions of azobenzene LC molecules. The collective motions are initiated from photoreaction in a single molecule and are subsequently amplified by the steric interaction with its neighboring molecules.One remaining challenge is to create the platform of materials and sample preparations for time-resolved electron diffraction experiments, which can only be achieved by the interdisciplinary fusion of the fields of materials chemistry and ultrafast science. Time-resolved electron diffraction is a powerful tool for structural investigation of molecular materials with a dynamic nature, whose adaptability goes beyond that of more complex assemblies of carbon nanomaterials. This methodology will extend the possibility to investigate motions of a variety of molecular self-assemblies on a larger scale, for example, to understand responses of biomolecular assemblies and intermolecular chemical reactions.

5.
J Phys Chem A ; 126(36): 6301-6308, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063425

RESUMO

We developed a multitimescale time-resolved electron diffraction setup by electrically synchronizing a nanosecond laser with our table-top picosecond time-resolved electron diffractometer. The setup covers the photoinduced structural dynamics of target materials at timescales ranging from picoseconds to submilliseconds. Using this setup, we sequentially observed the ultraviolet (UV) photoinduced bond dissociation, radical formation, and relaxation dynamics of the oxygen atoms in the epoxy functional group on the basal plane of graphene oxide (GO). The results show that oxygen radicals formed via UV photoexcitation on the basal plane of GO in several tens of picoseconds and then relaxed back to the initial state on the microsecond timescale. The results of first-principles calculations also support the formation of oxygen radicals in the excited state on an early timescale. These results are essential for the further discussion of the reactivities on the basal plane of GO, such as catalytic reactions and antibacterial and antiviral activities. The results also suggest that the multitimescale time-resolved electron diffraction system is a promising tool for laboratory-based molecular dynamics studies of materials and chemical systems.

6.
Acta Med Okayama ; 76(6): 715-721, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36549774

RESUMO

The failure of endodontic treatment is directly associated with microbial infection in the root canal or periapical areas. An endodontic sealer that is both bactericidal and biocompatible is essential for the success of root canal treatments. This is one of the vital issues yet to be solved in clinical dental practice. This in vitro study assessed the effectiveness of graphene oxide (GO) composites GO-CaF2 and GO-Ag-CaF2 as endodontic sealer materials. Dentin slices were coated with either the GO-based composites or commonly used root canal sealers (non-eugenol zinc oxide sealer). The coated slices were treated in 0.9% NaCl, phosphate-buffered saline (PBS), and simulated body fluid (SBF) at 37˚C for 24 hours to compare their sealing effect on the dentin surface. In addition, the radiopacity of these composites was examined to assess whether they complied with the requirements of a sealer for good radiographic visualization. Scanning electron microscopy showed the significant sealing capability of the composites as coating materials. Radiographic images confirmed their radiopacity. Mineral deposition indicated their bioactivity, especially of GO-Ag-CaF2, and thus it is potential for regenerative application. They were both previously shown to be bactericidal to oral microbes and cytocompatible with host cells. With such a unique assemblage of critical properties, these GO-based composites show promise as endodontic sealers for protection against reinfection in root canal treatment and enhanced success in endodontic treatment overall.


Assuntos
Grafite , Materiais Restauradores do Canal Radicular , Humanos , Materiais Restauradores do Canal Radicular/farmacologia , Grafite/farmacologia , Antibacterianos , Projetos de Pesquisa , Teste de Materiais
7.
Angew Chem Int Ed Engl ; 61(50): e202212874, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36203324

RESUMO

Confined space provides a reaction platform with altered reaction rate and selectivity compared with a homogeneous solution. In this work, porous phenolic pillar[5]arene crystals were used as a reaction space to promote and perturb equilibrium between lactones and their corresponding polyesters. Immersion of porous pillar[5]arene crystals in liquid lactones induced ring-opening polymerization of δ-valerolactone and ϵ-caprolactone at room temperature because the phenolic hydroxy groups have catalytic activity via hydrogen bonds and the pillar[5]arene cavities prefer linear guests. After the reaction, pillar[5]arene and polyesters formed pseudo-polyrotaxanes.

8.
Faraday Discuss ; 227: 189-203, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295888

RESUMO

Understanding the biodegradability of graphene materials by the action of oxidative enzymes secreted by immune cells is essential for developing applicable biomedical products based on these materials. Herein, we demonstrate the biodegradation of graphene oxide (GO) by recombinant eosinophil peroxidase (EPO) enzyme extracted from human eosinophils in the presence of a low concentration of hydrogen peroxide and NaBr. We compared the degradation capability of the enzyme on three different GO samples containing different degrees of oxygen functional groups on their graphenic lattices. EPO succeeded in degrading the three tested GO samples within 90 h treatment. Raman spectroscopy and transmission electron microscopy analyses provided clear-cut evidence for the biodegradation of GO by EPO catalysis. Our results provide more insight into a better understanding of the biodegradation of graphene materials, helping the design of future biomedical products based on these carbon nanomaterials.


Assuntos
Grafite , Nanoestruturas , Catálise , Peroxidase de Eosinófilo , Humanos , Análise Espectral Raman
9.
Macromol Rapid Commun ; 42(8): e2000577, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33251648

RESUMO

Polymer-graphene composites have attracted significant attention; however, their formation mechanisms are a focus of debate. This work tries to clarify how grafting occurs on graphene by electron spin resonance techniques. As a result, two pathways are found. One passes through the radicals formed by cleaving CO bonds on graphene are transferred to monomers, then grafting and polymerization proceed. Another mechanism passes through the oxy-radicals, which react with monomers in solution and finally react with carbon radicals on graphene. Based on the mechanism, various types of polymer-graphene composites are prepared, and applied to electrical conductive sheets, basic catalysts, and acidic catalysts.


Assuntos
Grafite , Condutividade Elétrica , Substâncias Macromoleculares , Polimerização , Polímeros
10.
Angew Chem Int Ed Engl ; 59(4): 1542-1547, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31705715

RESUMO

A method for the double functionalization of graphene oxide (GO) under mild alkaline conditions has been developed. Two functional groups were covalently linked to GO in two steps: the first group was attached by an epoxide ring-opening reaction and the second, bearing an amine function, was covalently conjugated to benzoquinone attached to the GO. The doubly functionalized GO was characterized by several techniques, confirming the sequential covalent modification of the GO surface with two different functional groups. This method is straightforward and the reaction conditions are mild, allowing preservation of the structure and properties of GO. This strategy could be exploited to prepare multifunctional GO conjugates with potential applications in many fields ranging from materials science to biomedicine.

11.
Langmuir ; 35(33): 10900-10909, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31343884

RESUMO

Given the specificity of the structure and function of graphene oxide (GO), hybridization with a variety of compounds will further extend its applications. To that end, we examined a new method for introducing a polymer brush onto the GO surface. In this method, GO was surface-modified with 2-((3-((2-bromo-2-methylpropanoyl)oxy)propyl)thio)ethylamine hydrochloride, which is a newly synthesized compound that contains an initiating group for atom transfer radical polymerization (ATRP) and an amino group for reacting with the epoxy groups on the GO surface. The ATRP-initiator-functionalized GO was then used as a substrate for the surface-initiated ATRP of methyl methacrylate (MMA), which produced graft polymers of poly(MMA) (PMMA) with targeted molecular weights and narrow molecular weight distributions; the average graft density was ∼0.06 chains/nm2. Because of their high dispersibilities and structural anisotropies, the PMMA-brush-decorated GOs formed lyotropic liquid crystals in their suspensions. In addition, similar suspensions with relatively high hybrid concentrations exhibited structural color that depended on the concentration.

12.
Bioorg Med Chem Lett ; 29(19): 126539, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421965

RESUMO

To increase the chances of finding new candidate molecules with medicinal properties, while expending less resource and effort, the present study used pooled substrates as starting materials. A bisindole compound that showed inhibitory activity was then isolated from the mixture, and the activity was improved by optimizing the substituents on the indole skeleton.


Assuntos
Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Catálise , Técnicas de Química Combinatória , Ensaios de Triagem em Larga Escala , Estrutura Molecular
13.
Beilstein J Org Chem ; 14: 182-186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441140

RESUMO

Discribed in this article is a versatile and practical method for the synthesis of C3-perfluoroalkyl-substituted phthalides in a one-pot manner. Upon treatment of KF or triethylamine, 2-cyanobenzaldehyde reacted with (perfluoroalkyl)trimethylsilanes via nucleophilic addition and subsequent intramolecular cyclization to give perfluoroalkylphthalides in good yields.

14.
Plant Cell ; 24(9): 3795-804, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22960909

RESUMO

Plant activators are compounds, such as analogs of the defense hormone salicylic acid (SA), that protect plants from pathogens by activating the plant immune system. Although some plant activators have been widely used in agriculture, the molecular mechanisms of immune induction are largely unknown. Using a newly established high-throughput screening procedure that screens for compounds that specifically potentiate pathogen-activated cell death in Arabidopsis thaliana cultured suspension cells, we identified five compounds that prime the immune response. These compounds enhanced disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous SA, but reduced its metabolite, SA-O-ß-d-glucoside. Inducing compounds inhibited two SA glucosyltransferases (SAGTs) in vitro. Double knockout plants that lack both SAGTs consistently exhibited enhanced disease resistance. Our results demonstrate that manipulation of the active free SA pool via SA-inactivating enzymes can be a useful strategy for fortifying plant disease resistance and may identify useful crop protectants.


Assuntos
Arabidopsis/enzimologia , Glucosiltransferases/genética , Doenças das Plantas/imunologia , Pseudomonas/patogenicidade , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Células Cultivadas , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Ensaios de Triagem em Larga Escala , Mutagênese Insercional , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Salicilatos/metabolismo , Bibliotecas de Moléculas Pequenas
15.
Nanoscale ; 16(16): 7908-7915, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38441113

RESUMO

Magnetically responsive photonic crystals of colloidal nanosheets hold great promise for various applications. Here, we systematically investigated the magnetically responsive behavior of a photonic crystal consisting of graphene oxide (GO) nanosheets and water. After applying a 12 T magnetic field perpendicular and parallel to the observation direction, the photonic crystal exhibited a more vivid structural color and no structural color, respectively, based on the magnetic orientation of GO nanosheets. The reflection wavelength can be modulated by varying the GO concentration, and the peak intensity can be basically enhanced by increasing both the time and strength of the magnetic application. To improve color quality, we developed a novel approach of alternately applying a magnetic field to two orthogonal directions, instead of using a rotating magnetic field. Finally, we achieved color switching by changing the direction of applied magnetic fields.

16.
Chemosphere ; 358: 142060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648981

RESUMO

The widespread application of engineered nanoparticles (NPs) in environmental remediation has raised public concerns about their toxicity to aquatic organisms. Although appropriate surface modification can mitigate the ecotoxicity of NPs, the lack of polymer coating to inhibit toxicity completely and the insufficient knowledge about charge effect hinder the development of safe nanomaterials. Herein, we explored the potential of polyglycerol (PG) functionalization in alleviating the environmental risks of NPs. Iron oxide NPs (ION) of 20, 100, and 200 nm sizes (IONS, IONM and IONL, respectively) were grafted with PG to afford ION-PG. We examined the interaction of ION and ION-PG with Caenorhabditis elegans (C. elegans) and found that PG suppressed non-specific interaction of ION with C. elegans to reduce their accumulation and to inhibit their translocation. Particularly, IONS-PG was completely excluded from worms of all developmental stages. By covalently introducing sulfate, carboxyl and amino groups onto IONS-PG, we further demonstrated that positively charged IONS-PG-NH3+ induced high intestinal accumulation, cuticle adhesion and distal translocation, whereas the negatively charged IONS-PG-OSO3- and IONS-PG-COO- were excreted out. Consequently, no apparent deleterious effects on brood size and life span were observed in worms treated by IONS-PG and IONS-PG bearing negatively charged groups. This study presents new surface functionalization approaches for developing ecofriendly nanomaterials.


Assuntos
Caenorhabditis elegans , Glicerol , Polímeros , Caenorhabditis elegans/efeitos dos fármacos , Animais , Glicerol/química , Glicerol/toxicidade , Polímeros/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Tamanho da Partícula , Propriedades de Superfície
17.
Nat Commun ; 15(1): 397, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195692

RESUMO

So-called Z-scheme systems permit overall water splitting using narrow-bandgap photocatalysts. To boost the performance of such systems, it is necessary to enhance the intrinsic activities of the hydrogen evolution photocatalyst and oxygen evolution photocatalyst, promote electron transfer from the oxygen evolution photocatalyst to the hydrogen evolution photocatalyst, and suppress back reactions. The present work develop a high-performance oxysulfide photocatalyst, Sm2Ti2O5S2, as an hydrogen evolution photocatalyst for use in a Z-scheme overall water splitting system in combination with BiVO4 as the oxygen evolution photocatalyst and reduced graphene oxide as the solid-state electron mediator. After surface modifications of the photocatalysts to promote charge separation and redox reactions, this system is able to split water into hydrogen and oxygen for more than 100 hours with a solar-to-hydrogen energy conversion efficiency of 0.22%. In contrast to many existing photocatalytic systems, the water splitting activity of the present system is only minimally reduced by increasing the background pressure to 90 kPa. These results suggest characteristics suitable for applications under practical operating conditions.

18.
Beilstein J Org Chem ; 9: 1663-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062826

RESUMO

The bromination of hydrocarbons with CBr4 as a bromine source, induced by light-emitting diode (LED) irradiation, has been developed. Monobromides were synthesized with high efficiency without the need for any additives, catalysts, heating, or inert conditions. Action and absorption spectra suggest that CBr4 absorbs light to give active species for the bromination. The generation of CHBr3 was confirmed by NMR spectroscopy and GC-MS spectrometry analysis, indicating that the present bromination involves the homolytic cleavage of a C-Br bond in CBr4 followed by radical abstraction of a hydrogen atom from a hydrocarbon.

19.
Chempluschem ; 88(8): e202300328, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37428458

RESUMO

This work reports the synthesis of high surface area reduced graphene oxides using L-ascorbic acid as a reducing agent by precisely controlling the interaction between graphene oxide and L-ascorbic acid. Based on the structural characterization, such as textural properties (specific surface area, pore structure), crystallinity, and carbon chemical state, we identified that the temperature and reaction time are critical parameters to control the stacking degree of the final reduced product. Besides, by performing a time course analysis of the reaction, we identified the side products of the reducing agent by LC-MS and verified the reduction mechanism. Following our results, we proposed an optimum condition for producing a graphene derivative adsorbent with a high surface area. This graphene derivative was tested in an aqueous solution with organic and inorganic pollutants such as methylene blue, methyl orange, and cadmium.

20.
ACS Appl Mater Interfaces ; 15(31): 37837-37844, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486061

RESUMO

Graphene-oxide (GO) nanosheets, which are oxidized derivatives of graphene, are regarded as promising building blocks for functional soft materials. Especially, thermoresponsive GO nanosheets have been widely employed to develop smart membranes/surfaces, hydrogel actuators, recyclable systems, and biomedical applications. However, current synthetic strategies to generate such thermoresponsive GO nanosheets have exclusively relied on the covalent or non-covalent modification of their surfaces with thermoresponsive polymers, such as poly(N-isopropylacrylamide). To impart a thermoresponsive ability to GO nanosheets themselves, we focused on the countercations of the carboxy and acidic hydroxy groups on the GO nanosheets. In this study, we established a general and reliable method to synthesize GO nanosheets with target countercations and systematically investigated their effects on thermoresponsive behaviors of GO nanosheets. As a result, we discovered that GO nanosheets with Bu4N+ countercations became thermoresponsive in water without the use of any thermoresponsive polymers, inducing a reversible sol-gel transition via their self-assembly and disassembly processes. Owing to the sol-gel transition capability, the resultant dispersion can be used as a direct writing ink for constructing a three-dimensionally designable gel architecture of the GO nanosheets. Our concept of "countercation engineering" can become a new strategy for imparting a stimuli-responsive ability to various charged nanomaterials for the development of next-generation smart materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA