Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 190: 3-12, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278808

RESUMO

What if the next generation of successful treatments was hidden in the current pharmacopoeia? Identifying new indications for existing drugs, also called the drug repurposing or drug rediscovery process, is a highly efficient and low-cost strategy. First reported almost a century ago, drug repurposing has emerged as a valuable therapeutic option for diseases that do not have specific treatments and rare diseases, in particular. This review focuses on Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder that induces accelerated and precocious aging, for which drug repurposing has led to the discovery of several potential treatments over the past decade.


Assuntos
Progéria , Humanos , Lamina Tipo A/genética , Preparações Farmacêuticas , Progéria/tratamento farmacológico , Progéria/genética
2.
Proc Natl Acad Sci U S A ; 112(29): 9034-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26150484

RESUMO

"Café-au-lait" macules (CALMs) and overall skin hyperpigmentation are early hallmarks of neurofibromatosis type 1 (NF1). One of the most frequent monogenic diseases, NF1 has subsequently been characterized with numerous benign Schwann cell-derived tumors. It is well established that neurofibromin, the NF1 gene product, is an antioncogene that down-regulates the RAS oncogene. In contrast, the molecular mechanisms associated with alteration of skin pigmentation have remained elusive. We have reassessed this issue by differentiating human embryonic stem cells into melanocytes. In the present study, we demonstrate that NF1 melanocytes reproduce the hyperpigmentation phenotype in vitro, and further characterize the link between loss of heterozygosity and the typical CALMs that appear over the general hyperpigmentation. Molecular mechanisms associated with these pathological phenotypes correlate with an increased activity of cAMP-mediated PKA and ERK1/2 signaling pathways, leading to overexpression of the transcription factor MITF and of the melanogenic enzymes tyrosinase and dopachrome tautomerase, all major players in melanogenesis. Finally, the hyperpigmentation phenotype can be rescued using specific inhibitors of these signaling pathways. These results open avenues for deciphering the pathological mechanisms involved in pigmentation diseases, and provide a robust assay for the development of new strategies for treating these diseases.


Assuntos
Células-Tronco Embrionárias/citologia , Hiperpigmentação/patologia , Melanócitos/patologia , Modelos Biológicos , Neurofibromatose 1/patologia , Proliferação de Células , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Melaninas/metabolismo , Melanócitos/enzimologia , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Mutação/genética , Neurofibromina 1/genética , Fenótipo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
3.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28211642

RESUMO

Organ-on-a-chip platforms seek to recapitulate the complex microenvironment of human organs using miniaturized microfluidic devices. Besides modeling healthy organs, these devices have been used to model diseases, yielding new insights into pathophysiology. Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease showing accelerated vascular aging, leading to the death of patients due to cardiovascular diseases. HGPS targets primarily vascular cells, which reside in mechanically active tissues. Here, a progeria-on-a-chip model is developed and the effects of biomechanical strain are examined in the context of vascular aging and disease. Physiological strain induces a contractile phenotype in primary smooth muscle cells (SMCs), while a pathological strain induces a hypertensive phenotype similar to that of angiotensin II treatment. Interestingly, SMCs derived from human induced pluripotent stem cells of HGPS donors (HGPS iPS-SMCs), but not from healthy donors, show an exacerbated inflammatory response to strain. In particular, increased levels of inflammation markers as well as DNA damage are observed. Pharmacological intervention reverses the strain-induced damage by shifting gene expression profile away from inflammation. The progeria-on-a-chip is a relevant platform to study biomechanics in vascular biology, particularly in the setting of vascular disease and aging, while simultaneously facilitating the discovery of new drugs and/or therapeutic targets.


Assuntos
Progressão da Doença , Inflamação/patologia , Dispositivos Lab-On-A-Chip , Progéria/fisiopatologia , Angiotensina II/farmacologia , Fenômenos Biomecânicos , Vasos Sanguíneos/patologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lovastatina/farmacologia , Microfluídica , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fenótipo
4.
Development ; 139(7): 1247-57, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22357933

RESUMO

The role of microRNAs (miRNAs) as coordinators of stem cell fate has emerged over the last decade. We have used human embryonic stem cells to identify miRNAs involved in neural lineage commitment induced by the inhibition of TGFß-like molecule-mediated pathways. Among several candidate miRNAs expressed in the fetal brain, the two isoforms of miR-125 alone were detected in a time window compatible with a role in neural commitment in vitro. Functional analysis indicated that miR-125 isoforms were actively involved in the promotion of pluripotent cell conversion into SOX1-positive neural precursors. miR-125 promotes neural conversion by avoiding the persistence of non-differentiated stem cells and repressing alternative fate choices. This was associated with the regulation by miR-125 of SMAD4, a key regulator of pluripotent stem cell lineage commitment. Activation of miR-125 was directly responsive to the levels of TGFß-like molecules, placing miR-125 at the core of mechanisms that lead to the irreversible neural lineage commitment of pluripotent stem cells in response to external stimuli.


Assuntos
Células-Tronco Embrionárias/citologia , MicroRNAs/metabolismo , Neurônios/metabolismo , Ativinas/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular , Linhagem Celular , Separação Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Isoformas de Proteínas , Proteína Smad4/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(36): 14861-6, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21856949

RESUMO

Melanocytes are essential for skin homeostasis and protection, and their defects in humans lead to a wide array of diseases that are potentially extremely severe. To date, the analysis of molecular mechanisms and the function of human melanocytes have been limited because of the difficulties in accessing large numbers of cells with the specific phenotypes. This issue can now be addressed via a differentiation protocol that allows melanocytes to be obtained from pluripotent stem cell lines, either induced or of embryonic origin, based on the use of moderate concentrations of a single cytokine, bone morphogenic protein 4. Human melanocytes derived from pluripotent stem cells exhibit all the characteristic features of their adult counterparts. This includes the enzymatic machinery required for the production and functional delivery of melanin to keratinocytes. Melanocytes also integrate appropriately into organotypic epidermis reconstructed in vitro. The availability of human cells committed to the melanocytic lineage in vitro will enable the investigation of those mechanisms that guide the developmental processes and will facilitate analysis of the molecular mechanisms responsible for genetic diseases. Access to an unlimited resource may also prove a vital tool for the treatment of hypopigmentation disorders when donors with matching haplotypes become available in clinically relevant banks of pluripotent stem cell lines.


Assuntos
Células-Tronco Adultas/citologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Epidérmicas , Melanócitos/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Adultas/metabolismo , Linhagem Celular , Epiderme/metabolismo , Humanos , Hipopigmentação/metabolismo , Hipopigmentação/terapia , Melanócitos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transplante de Células-Tronco
6.
Nat Commun ; 15(1): 1816, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418829

RESUMO

The design of human model systems is highly relevant to unveil the underlying mechanisms of aging and to provide insights on potential interventions to extend human health and life span. In this perspective, we explore the potential of 2D or 3D culture models comprising human induced pluripotent stem cells and transdifferentiated cells obtained from aged or age-related disorder-affected donors to enhance our understanding of human aging and to catalyze the discovery of anti-aging interventions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Idoso , Envelhecimento , Reprogramação Celular/genética , Longevidade
7.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015640

RESUMO

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Doença de Depósito de Glicogênio Tipo III , Humanos , Camundongos , Ratos , Animais , Doença de Depósito de Glicogênio Tipo III/genética , Doença de Depósito de Glicogênio Tipo III/terapia , Sistema da Enzima Desramificadora do Glicogênio/genética , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Transgenes
8.
JCI Insight ; 9(11)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753465

RESUMO

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Fígado , Sirolimo , Animais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Dependovirus/genética , Terapia Genética/métodos , Camundongos , Fígado/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Músculo Esquelético/metabolismo , Fenótipo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Humanos , Masculino
9.
Stem Cell Res ; 72: 103214, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37769385

RESUMO

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder characterized by a deficiency of glycogen debranching enzyme (GDE) leading to cytosolic glycogen accumulation and inducing liver and muscle pathology. Skin fibroblasts from three GSDIII patients were reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrated Sendai virus. All of the three lines exhibited normal morphology, expression of pluripotent markers, stable karyotype, potential of trilineage differentiation and absence of GDE expression, making them valuable tools for modeling GSDIII disease in vitro, studying pathological mechanisms and investigating potential treatments.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Doença de Depósito de Glicogênio Tipo III , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Depósito de Glicogênio Tipo III/metabolismo , Doença de Depósito de Glicogênio Tipo III/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/patologia , Músculos/metabolismo , Músculos/patologia
10.
Front Cell Dev Biol ; 11: 1163427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250895

RESUMO

Introduction: Glycogen storage disease type III (GSDIII) is a rare genetic disease caused by mutations in the AGL gene encoding the glycogen debranching enzyme (GDE). The deficiency of this enzyme, involved in cytosolic glycogen degradation, leads to pathological glycogen accumulation in liver, skeletal muscles and heart. Although the disease manifests with hypoglycemia and liver metabolism impairment, the progressive myopathy is the major disease burden in adult GSDIII patients, without any curative treatment currently available. Methods: Here, we combined the self-renewal and differentiation capabilities of human induced pluripotent stem cells (hiPSCs) with cutting edge CRISPR/Cas9 gene editing technology to establish a stable AGL knockout cell line and to explore glycogen metabolism in GSDIII. Results: Following skeletal muscle cells differentiation of the edited and control hiPSC lines, our study reports that the insertion of a frameshift mutation in AGL gene results in the loss of GDE expression and persistent glycogen accumulation under glucose starvation conditions. Phenotypically, we demonstrated that the edited skeletal muscle cells faithfully recapitulate the phenotype of differentiated skeletal muscle cells of hiPSCs derived from a GSDIII patient. We also demonstrated that treatment with recombinant AAV vectors expressing the human GDE cleared the accumulated glycogen. Discussion: This study describes the first skeletal muscle cell model of GSDIII derived from hiPSCs and establishes a platform to study the mechanisms that contribute to muscle impairments in GSDIII and to assess the therapeutic potential of pharmacological inducers of glycogen degradation or gene therapy approaches.

11.
Aging Cell ; 22(12): e13983, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858983

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies.


Assuntos
Senilidade Prematura , Progéria , Adolescente , Criança , Humanos , Camundongos , Animais , Progéria/tratamento farmacológico , Progéria/genética , Progéria/metabolismo , Senilidade Prematura/tratamento farmacológico , Senilidade Prematura/genética , Grelina/farmacologia , Qualidade de Vida , Pele/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Envelhecimento
12.
Dev Biol ; 356(2): 506-15, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21684271

RESUMO

The molecular mechanisms controlling the differentiation of human basal keratinocyte stem cells towards the epidermis are well characterized, whereas the earliest process leading to the specification of embryonic stem cells into keratinocytes is still not well understood. MicroRNAs are regulators of many cellular events, but evidence for microRNA acting on the differentiation of human embryonic stem cells into a specific lineage has been elusive. By using our recent protocol for obtaining functional keratinocytes from hESC, we attempted to analyze the role of microRNAs in the early stages of epidermal differentiation. Thus, we identified a set of 5 microRNAs, namely miR-200a, miR-200b, miR-203, miR-205 and miR-429, that are specifically overexpressed during the early stages of the differentiation process. Interestingly, our functional analyses revealed an instrumental role of miR-203, which had been previously shown to play a key role during the formation of the pluristratified epidermis by basal keratinocyte stem cells, in the early keratinocyte commitment. These results highlight the determinant and unique role of miR-203 during the entire process of epidermal development by extending its spectrum of action from the early commitment of embryonic stem cells to ultimate differentiation of the organ.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Epiderme/embriologia , MicroRNAs/fisiologia , Linhagem da Célula , Células Cultivadas , Humanos , Queratinócitos/citologia , Especificidade de Órgãos
13.
Stem Cells ; 29(6): 895-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21472820

RESUMO

Although cell therapy has been clinically implemented for several decades, its use is hampered by the difficulty in supplying the amount of epidermal substitute needed to extend the application to all patients who may benefit from it. How human pluripotent stem cells may help meet this challenge is the topic of this review. After reporting on the main current applications and needs of skin grafting, we explore the potential of pluripotent stem cells--either of embryonic origin or produced by genetic reprogramming--to provide the needed clinical-grade keratinocytes, fulfilling industrial scale production, and quality standards. Immunogenicity is clearly an issue, although one may expect cells displaying characteristics of fetal or embryonic skin to have a much better tolerance than adult keratinocytes. The open possibility of a bank of pluripotent stem cell lines selected on the basis of interesting haplotypes may eventually provide a definitive answer. Actually, making the case for pluripotent stem cells in skin grafting goes well beyond that specific cell type. Most cell phenotypes that normally participate to the formation of dermis and epidermis can either already be obtained through in vitro differentiation from pluripotent stem cells or would likely migrate from the host into a graft. However, differentiation protocols for specialized glands and hair follicles remain to be designed. A future can be foreseen when reconstructive medicine will make use of composite grafts integrating several different cell types and biomaterials.


Assuntos
Células-Tronco Pluripotentes/transplante , Transplante de Pele/métodos , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Humanos , Queratinócitos/transplante , Células-Tronco Pluripotentes/citologia , Transplante Homólogo/efeitos adversos , Transplante Homólogo/métodos
14.
Biomedicines ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35740450

RESUMO

Limb girdle muscular dystrophies (LGMD), caused by mutations in 29 different genes, are the fourth most prevalent group of genetic muscle diseases. Although the link between LGMD and its genetic origins has been determined, LGMD still represent an unmet medical need. Here, we describe a platform for modeling LGMD based on the use of human induced pluripotent stem cells (hiPSC). Thanks to the self-renewing and pluripotency properties of hiPSC, this platform provides a renewable and an alternative source of skeletal muscle cells (skMC) to primary, immortalized, or overexpressing cells. We report that skMC derived from hiPSC express the majority of the genes and proteins that cause LGMD. As a proof of concept, we demonstrate the importance of this cellular model for studying LGMDR9 by evaluating disease-specific phenotypes in skMC derived from hiPSC obtained from four patients.

15.
Front Pharmacol ; 13: 856804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571097

RESUMO

Limb-girdle muscular dystrophy type R3 (LGMD R3) is a rare genetic disorder characterized by a progressive proximal muscle weakness and caused by mutations in the SGCA gene encoding alpha-sarcoglycan (α-SG). Here, we report the results of a mechanistic screening ascertaining the molecular mechanisms involved in the degradation of the most prevalent misfolded R77C-α-SG protein. We performed a combinatorial study to identify drugs potentializing the effect of a low dose of the proteasome inhibitor bortezomib on the R77C-α-SG degradation inhibition. Analysis of the screening associated to artificial intelligence-based predictive ADMET characterization of the hits led to identification of the HDAC inhibitor givinostat as potential therapeutical candidate. Functional characterization revealed that givinostat effect was related to autophagic pathway inhibition, unveiling new theories concerning degradation pathways of misfolded SG proteins. Beyond the identification of a new therapeutic option for LGMD R3 patients, our results shed light on the potential repurposing of givinostat for the treatment of other genetic diseases sharing similar protein degradation defects such as LGMD R5 and cystic fibrosis.

16.
Physiol Genomics ; 43(2): 77-86, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21081659

RESUMO

Mesenchymal stem cells (MSCs) are present in a wide variety of tissues during development of the human embryo starting as early as the first trimester. Gene expression profiling of these cells has focused primarily on the molecular signs characterizing their potential heterogeneity and their differentiation potential. In contrast, molecular mechanisms participating in the emergence of MSC identity in embryo are still poorly understood. In this study, human embryonic stem cells (hESs) were differentiated toward MSCs (ES-MSCs) to compare the genetic patterns between pluripotent hESs and multipotent MSCs by a large genomewide expression profiling of mRNAs and microRNAs (miRNAs). After whole genome differential transcriptomic analysis, a stringent protocol was used to search for genes differentially expressed between hESs and ES-MSCs, followed by several validation steps to identify the genes most specifically linked to the MSC phenotype. A network was obtained that encompassed 74 genes in 13 interconnected transcriptional systems that are likely to contribute to MSC identity. Pairs of negatively correlated miRNAs and mRNAs, which suggest miRNA-target relationships, were then extracted and validation was sought with the use of Pre-miRs. We report here that underexpression of miR-148a and miR-20b in ES-MSCs, compared with ESs, allows an increase in expression of the EPAS1 (Endothelial PAS domain 1) transcription factor that results in the expression of markers of the MSC phenotype specification.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Dados de Sequência Molecular , Fenótipo , RNA Mensageiro/metabolismo , Transcrição Gênica , Regulação para Cima/genética
17.
Biochem Soc Trans ; 39(6): 1775-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103524

RESUMO

Progeria, also known as HGPS (Hutchinson-Gilford progeria syndrome), is a rare fatal genetic disease characterized by an appearance of accelerated aging in children. This syndrome is typically caused by mutations in codon 608 (C1804T) of the gene encoding lamins A and C, LMNA, leading to the production of a truncated form of the protein called progerin. Owing to their unique potential to self-renew and to differentiate into any cell types of the organism, pluripotent stem cells offer a unique tool to study molecular and cellular mechanisms related to this global and systemic disease. Recent studies have exploited this potential by generating human induced pluripotent stem cells from HGPS patients' fibroblasts displaying several phenotypic defects characteristic of HGPS such as nuclear abnormalities, progerin expression, altered DNA-repair mechanisms and premature senescence. Altogether, these findings provide new insights on the use of pluripotent stem cells for pathological modelling and may open original therapeutic perspectives for diseases that lack pre-clinical in vitro human models, such as HGPS.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Progéria/patologia , Humanos , Progéria/terapia
18.
Nanoscale Horiz ; 6(3): 245-259, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33576750

RESUMO

The vascular bioactivity/safety of nanomaterials is typically evaluated by animal testing, which is of low throughput and does not account for biological differences between animals and humans such as ageing, metabolism and disease profiles. The development of personalized human in vitro platforms to evaluate the interaction of nanomaterials with the vascular system would be important for both therapeutic and regenerative medicine. A library of 30 nanoparticle (NP) formulations, in use in imaging, antimicrobial and pharmaceutical applications, was evaluated in a reporter zebrafish model of vasculogenesis and then tested in personalized humanized models composed of human-induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) with "young" and "aged" phenotypes in 3 vascular network formats: 2D (in polystyrene dish), 3D (in Matrigel) and in a blood vessel on a chip. As a proof of concept, vascular toxicity was used as the main readout. The results show that the toxicity profile of NPs to hiPSC-ECs was dependent on the "age" of the endothelial cells and vascular network format. hiPSC-ECs were less susceptible to the cytotoxicity effect of NPs when cultured in flow than in static conditions, the protective effect being mediated, at least in part, by glycocalyx. Overall, the results presented here highlight the relevance of in vitro hiPSC-derived vascular systems to screen vascular nanomaterial interactions.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Nanopartículas/toxicidade , Adolescente , Animais , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos , Peixe-Zebra
19.
Clin Transl Med ; 11(3): e319, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784018

RESUMO

BACKGROUND: Severe ventricular rhythm disturbances are the hallmark of arrhythmogenic cardiomyopathy (ACM), and are often explained by structural conduction abnormalities. However, comprehensive investigations of ACM cell electrical instability are lacking. This study aimed to elucidate early electrical myogenic signature of ACM. METHODS: We investigated a 41-year-old ACM patient with a missense mutation (c.394C>T) in the DSC2 gene, which encodes desmocollin 2. Pathogenicity of this variant was confirmed using a zebrafish DSC2 model system. Control and DSC2 patient-derived pluripotent stem cells were reprogrammed and differentiated into cardiomyocytes (hiPSC-CM) to examine the specific electromechanical phenotype and its modulation by antiarrhythmic drugs (AADs). Samples of the patient's heart and hiPSC-CM were examined to identify molecular and cellular alterations. RESULTS: A shortened action potential duration was associated with reduced Ca2+ current density and increased K+ current density. This finding led to the elucidation of previously unknown abnormal repolarization dynamics in ACM patients. Moreover, the Ca2+ mobilised during transients was decreased, and the Ca2+ sparks frequency was increased. AAD testing revealed the following: (1) flecainide normalised Ca2+ transients and significantly decreased Ca2+ spark occurrence and (2) sotalol significantly lengthened the action potential and normalised the cells' contractile properties. CONCLUSIONS: Thorough analysis of hiPSC-CM derived from the DSC2 patient revealed abnormal repolarization dynamics, prompting the discovery of a short QT interval in some ACM patients. Overall, these results confirm a myogenic origin of ACM electrical instability and provide a rationale for prescribing class 1 and 3 AADs in ACM patients with increased ventricular repolarization reserve.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Desmocolinas/genética , Eletrocardiografia/métodos , Canais Iônicos/genética , Adulto , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Peixe-Zebra
20.
Lancet ; 374(9703): 1745-53, 2009 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19932355

RESUMO

BACKGROUND: Cell therapy for large burns is dependent upon autologous epidermis reconstructed in vitro. However, the effectiveness of current procedures is limited by the delay needed to culture the patient's own keratinocytes. To assess whether the keratinocyte progeny of human embryonic stem cells (hESCs) could be used to form a temporary skin substitute for use in patients awaiting autologous grafts, we investigated the cells' capability of constructing a pluristratified epidermis. METHODS: hESCs from lines H9 and SA01 were seeded at least in triplicate on fibroblast feeder cells for 40 days in a medium supplemented with bone morphogenetic protein 4 and ascorbic acid. Molecular characterisation of cell differentiation was done throughout the process by quantitative PCR, fluorescence-activated cell sorting, and immunocytochemical techniques. Keratinocyte molecular differentiation and functional capacity to construct a human epidermis were assessed in vitro and in vivo. FINDINGS: From hESCs, we generated a homogeneous population of cells that showed phenotypic characteristics of basal keratinocytes. Expression levels of genes encoding keratin 14, keratin 5, integrin alpha6, integrin beta4, collagen VII, and laminin 5 in these cells were similar to those in basal keratinocytes. After seeding on an artificial matrix, keratinocytes derived from hESCs (K-hESCs) formed a pluristratified epidermis. Keratin-14 immunostaining was seen in the basal compartment, with keratin 10 present in layers overlying the basal layer. Involucrin and filaggrin, late markers of epidermal differentiation, were detected in the uppermost layers only. 12 weeks after grafting onto five immunodeficient mice, epidermis derived from K-hESCs had a structure consistent with that of mature human skin. Human involucrin was appropriately located in spinous and granular layers and few Ki67-positive cells were detected in the basal layer. INTERPRETATION: hESCs can be differentiated into basal keratinocytes that are fully functional--ie, able to construct a pluristratified epidermis. This resource could be developed to provide temporary skin substitutes for patients awaiting autologous grafts. FUNDING: Institut National de la Santé et de la Recherche Médicale, University Evry Val d'Essonne, Association Française contre les Myopathies, Fondation René Touraine, and Genopole.


Assuntos
Células-Tronco Embrionárias/citologia , Células Epidérmicas , Queratinócitos/citologia , Células-Tronco Pluripotentes/citologia , Pele Artificial , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Proteínas Filagrinas , Humanos , Queratinócitos/metabolismo , Queratinas/metabolismo , Camundongos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA