Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 88(9): 5368-5376, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37079700

RESUMO

An equilibrium acidity (pKa) scale that comprises 16 Brönsted organic acids, including phenols, carboxylic acids, azoles, and phenylmalononitriles, was established in a choline chloride/EG-based deep eutectic solvent (DES) ([Ch][Cl]:2EG) by ultraviolet-visible (UV-Vis) spectroscopic methods. The established acidity scale spans about 6 pK units in the DES, which is similar to that for these acids in water. The acidity comparisons and linear correlations between the DES and other solvents show that the solvent property of [Ch][Cl]:2EG is quite different from those of amphiphilic protic and dipolar aprotic molecular solvents. The carbon dioxide absorption capabilities as well as apparent absorption kinetics for a series of anion-functionalized DESs ([Ch][X]:2EG) were measured, and the results show that the basicity of comprising anion [X] of choline salt is essential for the maximum carbon dioxide absorption capacity, i.e., a stronger basicity leads to a greater absorption capacity. The possible absorption mechanisms for carbon dioxide absorption in these DESs were also discussed based on the spectroscopic evidence.

2.
J Org Chem ; 85(20): 13204-13210, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32900190

RESUMO

A Brönsted basicity scale (∼24 pK units) for 85 commonly seen imidazole-, imidazoline-, triazole-, and thiazole-based N-heterocyclic olefins (NHOs) in DMSO was established using a well-examined computational model. The influence of substituents on the Brönsted basicities of these NHOs was investigated through basicity comparisons and rationalized by geometric analyses. The Gibbs energy (ΔGr) of the reaction between NHO and CO2 was also calculated, which linearly correlates with the basicity of the corresponding NHO, suggesting that the stability of NHO-CO2 adducts can be evaluated by the basicity of NHOs and a stronger basicity leads to a more stable NHO-CO2 adduct.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA