Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nano Lett ; 24(12): 3678-3685, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471109

RESUMO

Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.

2.
Opt Express ; 31(21): 34011-34020, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859166

RESUMO

In this paper, we put up a robust design of a stable single-mode-operated GaSb-based laser diode emitting around 1950nm. This novel design structure with socketed ridge-waveguide enables a simple fabrication and batch production of mid-infrared laser diodes on account of the mere usage of standard photolithography. By introducing micron-level index perturbations distributed along the ridge waveguide, the threshold gains of different FP modes are modulated. Four geometrical parameters of the perturbations are systematically optimized by analyzing the reflection spectrum to get a robust single-mode characteristic. Based on the optimized geometrical parameters, 1-mm long uncoated lasers are carried out and exhibit a stable single longitudinal mode from 10 °C to 40 °C with a maximum output power of more than 10 mW. Thus, we prove the feasibility of the standard photolithography to manufacture the monolithic single-mode infrared laser source without regrowth process or nanoscale lithography.

3.
Opt Express ; 31(6): 10348-10357, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157583

RESUMO

We report the slow-light enhanced spin-resolved in-plane emission from a single quantum dot (QD) in a photonic crystal waveguide (PCW). The slow light dispersions in PCWs are designed to match the emission wavelengths of single QDs. The resonance between two spin states emitted from a single QD and a slow light mode of a waveguide is investigated under a magnetic field with Faraday configuration. Two spin states of a single QD experience different degrees of enhancement as their emission wavelengths are shifted by combining diamagnetic and Zeeman effects with an optical excitation power control. A circular polarization degree up to 0.81 is achieved by changing the off-resonant excitation power. Strongly polarized photon emission enhanced by a slow light mode shows great potential to attain controllable spin-resolved photon sources for integrated optical quantum networks on chip.

4.
Opt Express ; 30(21): 38208-38215, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258387

RESUMO

High-performance infrared p-i-n photodetectors based on InAs/InAsSb/AlAsSb superlattices on GaSb substrate have been demonstrated at 300K. These photodetectors exhibit 50% and 100% cut-off wavelength of ∼3.2 µm and ∼3.5 µm, respectively. Under -130 mV bias voltage, the device exhibits a peak responsivity of 0.56 A/W, corresponding to a quantum efficiency (QE) of 28%. The dark current density at 0 mV and -130 mV bias voltage are 8.17 × 10-2 A/cm2 and 5.02 × 10-1 A/cm2, respectively. The device exhibits a saturated dark current shot noise limited specific detectivity (D*) of 3.43 × 109 cm·Hz1/2/W (at a peak responsivity of 2.5 µm) under -130 mV of applied bias.

5.
Nanotechnology ; 34(3)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35803211

RESUMO

In this paper, a strategy to finely modulate the energy band structure to control the carrier confinement capability of digital alloys (DA) is proposed. Strain analysis shows that As and Sb atoms are exchanged within the AlAsSb DA. The bottom of the corrected potential well is low on the left and high on the right in the growth direction, resulting in a higher band offset of the AlSb potential barrier layer on the left side of the potential well than on the right side. The modulation of the band leads to a higher probability of electron tunneling in DA under the action of an electric field opposite to the growth direction. Conversely, it is difficult for the electrons to tunnel into the lower energy level potential wells. TheI-Vcurve of DA shows that the current value under positive bias is significantly smaller than the value under negative bias when the voltage is higher. The measured results correspond perfectly with the modified energy band model, which verifies the feasibility of energy band modulation. This is important for the structural design of DA and the reduction of dark current in optoelectronic devices.

6.
Opt Express ; 29(21): 33864-33873, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809189

RESUMO

In this article, we present a tunable GaSb-based blazed grating external cavity laser (BG-ECL) with high spectral purity and high output power single-mode operation around 1940nm. The drastic increase in spectral selectivity and optical power results from the employment of a single-transverse-mode operating narrow ridge waveguide laser diode with an optimized AR coating on the front facet. The stable fundamental spatial mode output beam from the laser diode enables efficient collimation and high coupling efficiency with the blazed grating, leading to stronger wavelength-selective feedback. The AR coating with proper low reflectivity on the straight waveguide effectively suppresses the internal cavity mode lasing without causing extra optical loss. As a result, the BG-ECL device exhibits excellent comprehensive performance with a side mode suppression ratio (SMSR) over 50 dB with optical power exceeding 30 mW within a 70 nm tuning range. A maximum SMSR of 56.26 dB with 35.12 mW output power was observed in continuous-wave operation. By increasing the working temperature of the diode laser, the tuning range can be further extended to over 100 nm without noticeable degradation in spectral and output power performance.

7.
Opt Express ; 29(19): 30735-30750, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614794

RESUMO

The second-order topological photonic crystal with the 0D corner state provides a new way to investigate cavity quantum electrodynamics and develop topological nanophotonic devices with diverse functionalities. Here, we report on the optimization and robustness of the topological corner state in the second-order topological photonic crystal both in theory and in experiment. The topological nanocavity is formed based on the 2D generalized Su-Schrieffer-Heeger model. The quality factor of the corner state is optimized theoretically and experimentally by changing the gap between two photonic crystals or just modulating the position or size of the airholes surrounding the corner. The fabricated quality factors are further optimized by the surface passivation treatment which reduces surface absorption. A maximum quality factor of the fabricated devices is about 6000, which is the highest value ever reported for the active topological corner state. Furthermore, we demonstrate the robustness of the corner state against strong disorders including the bulk defect, edge defect, and even corner defect. Our results lay a solid foundation for further investigations and applications of the topological corner state, such as the investigation of a strong coupling regime and the development of optical devices for topological nanophotonic circuitry.

8.
Small ; 15(27): e1900837, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31018045

RESUMO

Interfaces in semiconductor heterostructures is of continuously greater significance in the trend of scaling materials down to the atomic limit. Since atoms tend to behave more irregularly around interfaces than in internal materials, accurate energy band alignment becomes a major challenge, which determines the ultimate performance of devices. Therefore, a comprehensive understanding of the interplay between heterointerface, energy band, and macro-performance is desiderated. Here, such interplay is explored by investigating asymmetric heterointerfaces with identical fabrication parameters in multiple-quantum-well lasers. The unexpected asymmetry derives from the atomic discrepancy around heterointerfaces, which ultimately improves the optical property through altered valence band offsets. Strain and charge distribution around heterointerfaces are characterized via geometric phase analysis and in situ bias electron holography, respectively. Combining experiments with theories, arsenic-enrichment at one of the interfaces is considered the origin of asymmetry. To reveal actual band alignment, valence band model is modified focusing on the transition around heterojunctions. The enhanced photoluminescence intensity reflects the alleviation of hole confinement insufficiency and the enlargement of valence band offset. The results help to advance the understanding of the general problem of interface in nanostructures and provide guidance applicable to various scenarios for micro-macro correlation.

9.
Opt Express ; 26(7): 8289-8295, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715797

RESUMO

A two-section InGaSb/AlGaAsSb single quantum well (SQW) laser emitting at 2 µm is presented. By varying the absorber bias voltage with a fixed gain current at 130 mA, passive mode locking at ~18.40 GHz, Q-switched mode locking, and passive Q-switching are observed in this laser. In the Q-switched mode locking regimes, the Q-switched RF signal and mode locked RF signal coexist, and the Q-switched lasing and mode-locked lasing happen at different wavelengths. This is the first observation of these three pulsed working regimes in a GaSb-based diode laser. An analysis of the regime switching mechanism is given based on the interplay between the gain saturation and the saturable absorption.

10.
Opt Express ; 25(3): 1778-1788, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519031

RESUMO

The inhomogeneous broadening of the bi-exciton state in quantum dots, i.e., the inhomogeneous broadening of the upper level of the cascade process, is not only a fundamental problem in quantum dots, but also closely related with the coherent control of this complex system and the quality of the entangled photon pairs, especially the time-bin entangled photon pairs. This inhomogeneous broadening is inherently a two-photon correlated phenomenon. In this work, we construct a genuine Franson-type nonlocal interference process to measure the inhomogeneous broadening of the bi-exciton state. The results show that the inhomogeneous broadening of the bi-exciton state is considerably smaller than that of the exciton state, that is why the entangled photon pairs can be generated by the cascade process in the quantum dot.

11.
Nanotechnology ; 28(39): 395701, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28682302

RESUMO

We demonstrate the utility of optical second harmonic generation (SHG) polarimetry to perform structural characterization of self-assembled zinc-blende/wurtzite III-V nanowire heterostructures. By analyzing four anisotropic SHG polarimetric patterns, we distinguish between wurtzite (WZ), zinc-blende (ZB) and ZB/WZ mixing III-V semiconducting crystal structures in nanowire systems. By neglecting the surface contributions and treating the bulk crystal within the quasi-static approximation, we can well explain the optical SHG polarimetry from the NWs with diameter from 200-600 nm. We show that the optical in-coupling and out-coupling coefficients arising from depolarization field can determine the polarization of the SHG. We also demonstrate micro-photoluminescence of GaAs quantum dots in related ZB and ZB/WZ mixing sections of core-shell NW structure, in agreement with the SHG polarimetry results. The ability to perform in situ SHG-based crystallographic study of semiconducting single and multi-crystalline nanowire heterostructures will be useful in displaying structure-property relationships of nanodevices.

12.
Opt Express ; 24(7): 7246-52, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27137016

RESUMO

High power and high brightness mid-infrared GaSb based lasers are desired for many applications, however, the high lateral divergence is still the influence factor for practical application. In this paper, a simple and effective approach based on the fishbone-shape microstructure was proposed, the effective improvement on both the lateral divergence and output power of 2 µm GaSb based broad-area lasers was demonstrated. The lateral divergence is reduced averagely by 55% and 15.8° for 95% power content is realized. The continuous-wave emission power is increased about 19% with the decreased threshold current. The other merits for this microstructure are the unchanged intrinsic characteristic of broad-area lasers and the low cost fabrication.

13.
Nanotechnology ; 26(38): 385706, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26334185

RESUMO

The realization of fiber-output single photon sources is necessary for quantum photonics. Here we present in situ probing and integration of single self-assembled quantum dots (QDs)-in-nanowires. Single self-assembled AlGaAs QDs were synthesized in GaAs/AlGaAs core-shell nanowires by molecular beam epitaxy and characterized by optical excitation in both micro-PL and fiber-integrating set-up. Cascaded biexciton-exciton emission with a saturation signal of 1000 counts per second at nitrogen temperature is achieved through the fiber-integrating setup, which makes single mode fibers an ideal candidate for single photons sources and paves the way for the realization of 'all fiber' devices. Numerical calculations were carried out to illustrate the collection efficiency and polarized photoluminescence characteristics. Extraction efficiencies as high as 70% over a broadband emission are reported and increase by a factor of about seven in comparison with air extraction, due to the larger refractive index of the fiber core.

14.
Nano Lett ; 13(4): 1399-404, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23464836

RESUMO

We report a new type of single InAs quantum dot (QD) embedded at the junction of gold-free branched GaAs/AlGaAs nanowire (NW) grown on silicon substrate. The photoluminescence intensity of such QD is ~20 times stronger than that from randomly distributed QD grown on the facet of straight NW. Sharp excitonic emission is observed at 4.2 K with a line width of 101 µeV and a vanishing two-photon emission probability of g(2)(0) = 0.031(2). This new nanostructure may open new ways for designing novel quantum optoelectronic devices.


Assuntos
Nanoestruturas/química , Nanotecnologia , Nanofios/química , Pontos Quânticos , Arsenicais/química , Desenho de Equipamento , Gálio/química , Índio/química , Silício
15.
Discov Nano ; 19(1): 44, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472539

RESUMO

Thanks to high performance above room temperature, antimonide laser diodes have shown great potential for broad application in the mid-infrared spectral region. However, the laser`s performance noticeably deteriorates due to the reduction of carrier confinement with increased emission wavelength. In this paper, a novel active region with higher carrier confinements both of electron and hole, by the usage of an indirect bandgap material of Al0.5GaAs0.04Sb as the quantum barrier, was put up to address the poor carrier confinement of GaSb-based type-I multi-quantum-well (MQW) diode lasers emission wavelength above 2.5 µm. The carrier confinement and the differential gain in the designed active region are enhanced as a result of the first proposed usage of an indirect-gap semiconductor as the quantum barrier with larger band offsets in conduction and valence bands, leading to high internal quantum efficiency and low threshold current density of our lasers. More importantly, the watt-level output optical power is obtained at a low injection current compared to the state of the art. Our work demonstrates a direct and cost-effective solution to address the poor carrier confinement of the GaSb-based MQW lasers, thereby achieving high-power mid-infrared lasers.

16.
Light Sci Appl ; 12(1): 65, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872383

RESUMO

The emerging hybrid integrated quantum photonics combines the advantages of different functional components into a single chip to meet the stringent requirements for quantum information processing. Despite the tremendous progress in hybrid integrations of III-V quantum emitters with silicon-based photonic circuits and superconducting single-photon detectors, on-chip optical excitations of quantum emitters via miniaturized lasers towards single-photon sources (SPSs) with low power consumptions, small device footprints, and excellent coherence properties is highly desirable yet illusive. In this work, we present realizations of bright semiconductor SPSs heterogeneously integrated with on-chip electrically-injected microlasers. Different from previous one-by-one transfer printing technique implemented in hybrid quantum dot (QD) photonic devices, multiple deterministically coupled QD-circular Bragg Grating (CBG) SPSs were integrated with electrically-injected micropillar lasers at one time via a potentially scalable transfer printing process assisted by the wide-field photoluminescence (PL) imaging technique. Optically pumped by electrically-injected microlasers, pure single photons are generated with a high-brightness of a count rate of 3.8 M/s and an extraction efficiency of 25.44%. Such a high-brightness is due to the enhancement by the cavity mode of the CBG, which is confirmed by a Purcell factor of 2.5. Our work provides a powerful tool for advancing hybrid integrated quantum photonics in general and boosts the developments for realizing highly-compact, energy-efficient and coherent SPSs in particular.

17.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671954

RESUMO

We developed a new scheme for cryogen-free cooling down to sub-3 K temperature range and ultra-low vibration level. An ultra-high-vacuum cryogen-free scanning probe microscope (SPM) system was built based on the new scheme. Instead of mounting a below-decoupled cryocooler directly onto the system, the new design was realized by integrating a Gifford-McMahon cryocooler into a separate liquefying chamber, providing two-stage heat exchangers in a remote way. About 10 L of helium gas inside the gas handling system was cooled, liquefied in the liquefying chamber, and then transferred to a continuous-flow cryostat on the SPM chamber through an ∼2 m flexible helium transfer line. The exhausted helium gas from the continuous-flow cryostat was then returned to the liquefying chamber for reliquefaction. A base temperature of ∼2.84 K at the scanner sample stage and a temperature fluctuation of almost within ±0.1 mK at 4 K were achieved. The cooling curves, tunneling current noise, variable-temperature test, scanning tunneling microscopy and non-contact atomic force microscopy imaging, and first and second derivatives of I(V) spectra are characterized to verify that the performance of our cryogen-free SPM system is comparable to the bath cryostat-based low-temperature SPM system. This remote liquefaction close-cycle scheme shows conveniency to upgrade the existing bath cryostat-based SPM system, upgradeability of realizing even lower temperature down to sub-1 K range, and great compatibility of other physical environments, such as high magnetic field and optical accesses. We believe that the new scheme could also pave a way for other cryogenic applications requiring low temperature but sensitive to vibration.

18.
Nanomaterials (Basel) ; 13(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446475

RESUMO

In this work, we developed pre-grown annealing to form ß2 reconstruction sites among ß or α (2 × 4) reconstruction phase to promote nucleation for high-density, size/wafer-uniform, photoluminescence (PL)-optimal InAs quantum dot (QD) growth on a large GaAs wafer. Using this, the QD density reached 580 (860) µm-2 at a room-temperature (T) spectral FWHM of 34 (41) meV at the wafer center (and surrounding) (high-rate low-T growth). The smallest FWHM reached 23.6 (24.9) meV at a density of 190 (260) µm-2 (low-rate high-T). The mediate rate formed uniform QDs in the traditional ß phase, at a density of 320 (400) µm-2 and a spectral FWHM of 28 (34) meV, while size-diverse QDs formed in ß2 at a spectral FWHM of 92 (68) meV and a density of 370 (440) µm-2. From atomic-force-microscope QD height distribution and T-dependent PL spectroscopy, it is found that compared to the dense QDs grown in ß phase (mediate rate, 320 µm-2) with the most large dots (240 µm-2), the dense QDs grown in ß2 phase (580 µm-2) show many small dots with inter-dot coupling in favor of unsaturated filling and high injection to large dots for PL. The controllable annealing (T, duration) forms ß2 or ß2-mixed α or ß phase in favor of a wafer-uniform dot island and the faster T change enables optimal T for QD growth.

19.
Nanotechnology ; 23(6): 065706, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22248719

RESUMO

We report a systematic optical spectroscopy study of low density InAs quantum clusters (QCs) grown by molecular beam epitaxy. The photoluminescence (PL) spectra show emission features of a wetting layer (WL) which contains hybridized quantum well states. The low-energy tail of the QCs' PL profile is actually an ensemble of some sharp lines, originating from the emission of different exciton states (e.g. X, X*, XX*) in a single quasi-three-dimensional (Q3D) cluster as detailed in the micro-PL spectra. The temperature dependence of PL spectra indicates photocarrier distribution and transport in the QC-WL system. Furthermore, this small InAs Q3D cluster is integrated with a distributed Bragg reflector structure, and using optical excitation creates a single photon source with the second-order correlation function of g((2))(0) = 0.31 at 16 K.

20.
Nanoscale Res Lett ; 17(1): 116, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477446

RESUMO

GaSb-based single-transverse-mode narrow ridge waveguide (RW) lasers with high power and simultaneous good beam quality have broad application prospects in the mid-infrared wavelength region. Yet its design and formation have not been investigated systematically, while the beam characteristics that affect their suitability for specific applications remain rarely analyzed and optimized. The present work addresses these issues by theoretically establishing a waveguide parameter domain that generalizes the overall possible combinations of ridge widths and etch depths that support single-transverse-mode operation for GaSb-based RW lasers. These results are applied to develop two distinct and representative waveguide designs derived from two proposed major optimization routes of model gain expansion and index-guiding enhancement. The designs were evaluated experimentally based on prototype 1-mm cavity-length RW lasers in the 1950 nm wavelength range, which were fabricated with waveguides having perpendicular ridge and smooth side-walls realized through optimized dry etching conditions. The model gain expanded RW laser design with a relatively shallow-etched (i.e., 1.55 [Formula: see text]m) and wide ridge (i.e., 7 [Formula: see text]m) yielded the highest single-transverse-mode power to date of 258 mW with a narrow lateral divergence angle of 11.1[Formula: see text] full width at half maximum at 800 mA under room-temperature continuous-wave operation, which offers promising prospects in pumping and coupling applications. Meanwhile, the index-guiding enhanced RW laser design with a relatively deeply etched (i.e., 2.05 [Formula: see text]m) and narrow ridge (i.e., 4 [Formula: see text]m) provided a highly stable and nearly astigmatism-free fundamental mode emission with an excellent beam quality of M[Formula: see text] factor around 1.5 over the entire operating current range, which is preferable for seeding external cavity applications and complex optical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA