Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 241: 117702, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980985

RESUMO

Trace heavy metals such as copper and nickel, when exceeds a certain level, cause detrimental effects on the ecosystem. The current study examined the potential of organic compounds enriched rice husk biochar (OCEB's) to remove the trace heavy metals from an aqueous solution in four steps. In 1st step, biochar' physical and chemical properties were analyzed through scanning electron microscope (SEM) and Fourier transforms infrared spectroscopy (FTIR). In the 2nd step, two biochar vis-a-vis glycine, alanine enriched biochar (GBC, ABC) was selected based on their adsorption capacity of four different metals Cr, Cu, Ni and Pb (chromium, copper, nickel, and lead). These two adsorbents (GBC, ABC) were further used to evaluate the best interaction of biochar for metal immobilization based on varying concentrations and times. Langmuir isotherm model suggested that the adsorption of Ni and Cu on the adsorbent surface supported the monolayer sorption. The qmax value of GBC for Cu removal increased by 90% compared to SBC (Simple rice husk biochar). The interaction of Cu and Ni with GBC and ABC was chemical, and 10 different time intervals were studied using pseud first and second-order kinetics models. The current study has supported the pseudo second-order kinetic model, which exhibited that the sorption of Ni and Cu occurred due to the chemical processes. The % removal efficiency with GBC was enhanced by 21% and 30% for Cu and Ni, respectively compared to the SBC. It was also noticed that GBC was 21% more efficient for % removal efficiency than the CBC. The study's findings supported that organic compound enriched rice husk biochar (GBC and ABC) is better than SBC for immobilizing the trace heavy metals from an aqueous solution.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Cobre/química , Níquel , Adsorção , Ecossistema , Metais Pesados/química , Compostos Orgânicos , Água , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Environ Res ; 243: 117786, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38036215

RESUMO

The interplay between Municipal Solid Waste (MSW) Management and data science unveils a panorama of opportunities and challenges, set against the backdrop of rising global waste and evolving technological landscapes. This article threads through the multifaceted aspects of incorporating data science into MSW management, unearthing key findings, novel knowledge, and instigating a call to action for stakeholders (e.g. policymakers, local authorities, waste management professionals, technology developers, and the general public) across the spectrum. Predominant challenges like the enigmatic nature of "black-box" models and tangible knowledge gaps in the sector are scrutinized, ushering in a narrative that emphasizes transparent, stakeholder-inclusive, and policy-adaptive approaches. Notably, a conscious shift towards "white-box" and "grey-box" data science models has been spotlighted as a pivotal response to transparency issues. Furthermore, the discourse highlights the necessity of crafting data science solutions that are specifically moulded to the nuanced challenges of MSW management, and it underscores the importance of recalibrating existing policies to be reflexive to technological advancements. A resolute call echoes for stakeholders to not just adapt but immerse themselves in a continuous learning trajectory, championing transparency, and fostering collaborations that hinge on innovative, data-driven methodologies. Thus, as the realms of data science and MSW management entwine, the article sheds light on the potential transformation awaiting waste management paradigms, contingent on the nurtured amalgamation of technological advances, policy alignment, and collaborative synergy.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos/análise , Ciência de Dados , Gerenciamento de Resíduos/métodos , Políticas
3.
Environ Res ; 246: 118163, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215929

RESUMO

The ecological transition in the transport sector is a major challenge to tackle environmental pollution, and European legislation will mandate zero-emission new cars from 2035. To reduce the impact of petrol and diesel vehicles, much emphasis is being placed on the potential use of synthetic fuels, including electrofuels (e-fuels). This research aims to examine a levelised cost (LCO) analysis of e-fuel production where the energy source is renewable. The energy used in the process is expected to come from a photovoltaic plant and the other steps required to produce e-fuel: direct air capture, electrolysis and Fischer-Tropsch process. The results showed that the LCOe-fuel in the baseline scenario is around 3.1 €/l, and this value is mainly influenced by the energy production component followed by the hydrogen one. Sensitivity, scenario and risk analyses are also conducted to evaluate alternative scenarios, and it emerges that in 84% of the cases, LCOe-fuel ranges between 2.8 €/l and 3.4 €/l. The findings show that the current cost is not competitive with fossil fuels, yet the development of e-fuels supports environmental protection. The concept of pragmatic sustainability, incentive policies, technology development, industrial symbiosis, economies of scale and learning economies can reduce this cost by supporting the decarbonization of the transport sector.


Assuntos
Fontes Geradoras de Energia , Hidrogênio , Combustíveis Fósseis , Automóveis , Custos e Análise de Custo
4.
Environ Res ; 244: 117858, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086500

RESUMO

The solid waste management (SWM) system is in a transitional phase in developing economies, and local municipalities and waste management companies are stepping toward integrating a waste treatment approach in the scheme of waste handling. However, there is an urgent need to explore cost-effective techniques, models, and potential revenue streams to sustain the state-run waste sector self-sufficiently. The proposed SWM model aims to support the local waste sector in Islamabad, the capital city of Pakistan, with 100% service area coverage to attain environmental and economic sustainability by defining dedicated waste collection streams to ensure quality material recovery under a cost-effective approach and modality. The innovative approach is applied to allocate the tonnage to various streams as per the city's current land use plan. The estimated/cost of the cleanliness services will be USD13.1 million per annum with an estimated per ton cost of USD 23. The establishment of the proposed material recovery facility (MRF) will process about 500 t/d of waste to produce 45 t/d compost and recover 130 t/d of recyclables. The environmentally friendly model saves 2.4 million tons of CO2‒eq/month from composting and recycling. The average economic potential from MRF and debris-crushing plants, including environmental benefit value, is calculated as USD 3.97 million annually. Recovery of services fee (70%) for various collection streams based on city land use and socio-economic conditions will generate revenue of USD 7.33 million annually. The total revenue will be USD 11.31 million (86% of total annual expenditures) to track the sector's self-sufficiency. To successfully reach the Sustainable Development Goals (SDGs) and Nationally Determined Contributions (NDCs), engaging the private sector from environmentally advanced economies to collaborate in the waste sector to enhance local technical capabilities is recommended.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Análise Custo-Benefício , Gerenciamento de Resíduos/métodos , Reciclagem , Cidades
5.
J Environ Manage ; 351: 119888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176379

RESUMO

Amid rising energy crises and greenhouse gas (GHG) emissions, designing energy efficient, GHG mitigation and profitable conservation farming strategies are pertinent for global food security. Therefore, we tested a hypothesis that no-till with residue retaining could improve energy productivity (EP) and energy use efficiency (EUE) while mitigating the carbon footprint (CF), water footprint (WF) and GHG emissions in rice-wheat double cropping system. We studied two tillage viz., conventional and conservation, with/without residue retaining, resulting as CT0 (puddled-transplanted rice, conventional wheat -residue), CTR (puddled-transplanted rice, conventional wheat + residue), NT0 (direct seeded rice, zero-till wheat -residue), and NTR (direct seeded rice, zero-till wheat + residue). The overall results showed that the NTR/NT0 had 34% less energy consumption and 1.2-time higher EP as compared to CTR/CT0. In addition, NTR increased 19.8% EUE than that of CT0. The grain yield ranged from 8.7 to 9.3 and 7.8-8.5 Mg ha-1 under CT and NT system, respectively. In NTR, CF and WF were 56.6% and 17.9% lower than that of CT0, respectively. The net GHG emissions were the highest (7261.4 kg CO2 ha-1 yr-1) under CT0 and lowest (4580.9 kg CO2 ha-1 yr-1) under NTR. Notably, the carbon sequestration under NTR could mitigate half of the system's CO2-eq emissions. The study results suggest that NTR could be a viable option to offset carbon emissions and water footprint by promoting soil organic carbon sequestration, and enhancing energy productivity and energy use efficiency in the South Asian Indo-Gangetic Plains.


Assuntos
Gases de Efeito Estufa , Oryza , Solo/química , Triticum , Carbono/análise , Dióxido de Carbono , Agricultura/métodos , Água
6.
Environ Res ; 193: 110421, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33160973

RESUMO

A pneumonia-like disease of unknown origin caused a catastrophe in Wuhan city, China. This disease spread to 215 countries affecting a wide range of people. World health organization (WHO) called it a pandemic and it was officially named as Severe Acute Respiratory Syndrome Corona virus 2 (SARS CoV-2), also known as Corona virus disease (COVID-19). This pandemic compelled countries to enforce a socio-economic lockdown to prevent its widespread. This paper focuses on how the particulate matter pollution was reduced during the lockdown period (23 March to April 15, 2020) as compared to before lockdown. Both ground-based and satellite observations were used to identify the improvement in air quality of Pakistan with primary focus on four major cities of Lahore, Islamabad, Karachi and Peshawar. Both datasets have shown a substantial reduction in PM2.5 pollution levels (ranging from 13% to 33% in case of satellite observations, while 23%-58% in ground-based observations) across Pakistan. Result shows a higher rate of COVID-19 spread in major cities of Pakistan with poor air quality conditions. Yet more research is needed in order to establish linkage between COVID-19 spread and air pollution. However, it can be partially attributed to both higher rate of population density and frequent exposure of population to enhanced levels of PM2.5 concentrations before lockdown period.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Paquistão/epidemiologia , Material Particulado/análise , SARS-CoV-2 , Fatores Socioeconômicos
7.
J Environ Manage ; 292: 112736, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33992871

RESUMO

The prediction of relative humidity is a challenging task because of its nonlinear nature. The machine learning-based prediction strategies have attained significant attention in tackling a broad class of challenging nonlinear and complex problems. The random forest algorithm is a well-proven machine learning algorithm due to its ease of training and implementation, as it requires minimal preprocessing. The random forest algorithm has hitherto not been employed for estimating air quality parameters, such as relative humidity. In this study, the random forest approach is implemented to estimate the relative humidity as a function of dry- and wet-bulb temperatures. A well-known commercial process simulator called Aspen HYSYS® V10 is linked with MATLAB® version 2019a to establish a data mining environment. The robustness of the prediction model is evaluated against varying wet-bulb depressions. There is high absolute deviation that indicates a lower prediction performance of the model against the higher wet-bulb depression i.e., ~20.0 °C. The random forest model can predict relative humidity with a 1.1% mean absolute deviation compared to the values obtained through Aspen HYSYS. The performance of the RF estimation model is also compared with a well-known support vector regression model. The random forest model demonstrates 74.4% better performance than the support vector machine model for the problem of interest, i.e., relative humidity estimation. This study will significantly help the practitioners in efficient designing of air-dependent energy systems as well as in better environmental management through rigorous prediction of relative humidity.


Assuntos
Mineração de Dados , Aprendizado de Máquina , Algoritmos , Conservação dos Recursos Naturais , Umidade
8.
J Environ Manage ; 290: 112537, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33865159

RESUMO

The generation of huge amounts of food waste due to the increasing population is a serious global issue. The inadequate management of food waste and lack of proper handling approaches have created adverse negative impacts on the environment and the society. The use of traditional disposal (i.e. landfilling) and treatment (i.e. incineration and composting) methods are not considered to be efficient for managing food waste. Thus, anaerobic digestion (AD) has proven to be promising and cost-effective, as an alternative technology, for digesting and converting food waste into renewable energy and useful chemicals. However, mono-digestion of food waste suffers from process inhibition and instability which limit its efficiency. Adding biochar that has high buffering capacity and ensures optimum nutrient balance was shown to enhance biogas/methane production yields. This review reports on the physicochemical characteristics of food waste, the existing problems of food waste treatment in AD as well as the role of biochar amendments on the optimization of critical process parameters and its action mechanisms in AD, which could be a promising means of improving the AD performance. Also, this review provides insights regarding the selection of the desired/appropriate biochar characteristics, i.e. depending on the source of the feedstock and the pyrolysis temperature, and its role in enhancing biogas production and preventing the problem of process instability in the AD system. Finally, this review paper highlights the economic and environmental challenges as well as the future perspectives concerning the application of biochar amendments in AD.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Carvão Vegetal , Metano
9.
Crit Rev Biotechnol ; 39(6): 779-799, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31137977

RESUMO

India has emerged as a key player with a high potential to develop a biomass and biobased economy due to its large geographic size and the massive amounts of agricultural and non agricultural biomass produced. India has joined hands with Europe to synchronize its efforts to create and facilitate the development of a biobased economy in this country. This paper aims to examine common research and development actions between the European Union (EU) and India to facilitate the development of these biobased economies. As a base, a thorough study has been performed considering the biomass potential and current status of the bioeconomy in both the EU and India based on the distillation of a series of 80 potential recommendations. The recommendations were grouped into four major categories: (1) biomass production, (2) by-products/waste, (3) biorefineries and (4) policy, market, and value-added products. A questionnaire was designed and distributed to key stakeholders belonging to: academia, industry, and policymakers in both India and the EU. A total of 231 responses were received and analyzed, based on the key recommendations made for the essential research and development topics that are of prime importance to develop biobased economies in both the EU and India. The findings of this study suggest recognizing the value-added contributions made by biobased products such as: food, feed, valuable materials and chemicals in both regions. It is important to reduce the overall process costs and minimize the environmental impacts of such a biobased economy.


Assuntos
Biotecnologia , Biomassa , Biotecnologia/economia , Biotecnologia/organização & administração , Biotecnologia/tendências , Europa (Continente) , Humanos , Índia
10.
J Environ Manage ; 249: 109316, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472308

RESUMO

This paper aims to examine the influence of various catalysts on biodiesel production, especially from non-food feedstocks with an ambition to optimize the catalytic biodiesel production. Homogenous acid catalysts are mainly used in biodiesel production, but they cannot be recovered and demand costly fuel purification as being corrosive. Similarly, enzyme catalysts are expensive in industrial-scale production of biodiesel. However, heterogeneous catalysts simplify the easy separation of product and by-products from the catalyst along with catalyst reusability and reduction of waste. Solid acid and base catalysts offer more advantages due to their non-toxicity, high surface area, reusability, higher stability, and the simplicity of purification. Solid base catalysts yield better activity than solid acid catalysts, however, they cannot esterify large amounts of free fatty acids (FFAs) in non-food feedstocks. The solid acid catalysts have the added advantages of being more tolerant to high amounts of FFAs and being able to simultaneously esterify FFAs and transesterify triglycerides in cheap feedstocks like waste cooking oil. Recently, an array of inorganic, organic and polymeric solid acid and nanomaterial-based catalysts have been developed using cheap feedstocks. However, the issues of low reactivity, small pore sizes, low stabilities, long reaction times, and high reaction temperatures still need to be solved. The developments of producing efficient, cheap, durable, and stable solid acid and nanomaterial-based catalysts have been critically reviewed in this study. Furthermore, the challenges and future perspectives of production of biodiesel and its industry growth have also been discussed.


Assuntos
Biocombustíveis , Óleos de Plantas , Catálise , Esterificação , Ácidos Graxos não Esterificados
11.
J Environ Manage ; 251: 109618, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563603

RESUMO

This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.


Assuntos
Líquidos Iônicos , Butanóis , Membranas Artificiais , Álcool de Polivinil , Água
12.
J Environ Manage ; 251: 109597, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563049

RESUMO

Anaerobic digestion (AD) of organic wastes is among the most promising approaches used for the simultaneous treatment of various waste streams, environment conservation, and renewable bioenergy generation (biomethane). Among the latest innovations investigated to enhance the overall performance of this process both qualitatively and quantitatively, the application of some nanoparticles (NPs) has attracted a great deal of attention. Typically, the NPs of potential benefit to the AD process could be divided into three groups: (i) zero-valent iron (ZVI) NPs, (ii) metallic and metal oxides NPs, and (iii) carbon-based NPs. The present review focuses on the latest findings reported on the application of these NPs in AD process and presents their various mechanisms of action leading to higher or lower biogas production rates. Among the NPs studies, ZVI NPs could be regarded as the most promising nanomaterials for enhancing biogas production through stabilizing the AD process as well as by stimulating the growth of beneficial microorganisms to the AD process and the enzymes involved. Future research should focus on various attributes of NPs when used as additives in biogas production, including facilitating mixing and pumping operations, enriching the population and diversity of beneficial microorganisms for AD, improving biogas release, and inducing the production and activity of AD-related enzymes. The higher volume of methane-enriched biogas would be translated into higher returns on investment and could therefore, result in further growth of the biogas production industry. Nevertheless, efforts should be devoted to decreasing the price of NPs so that the enhanced biogas and methane production (by over 90%, compared to control) would be more economically justified, facilitating the large-scale application of these compounds. In addition to economic considerations, environmental issues are also regarded as major constraints which should be addressed prior to widespread implementation of NP-augmented AD processes. More specifically, the fate of NPs augmented in AD process should be scrutinized to ensure maximal beneficial impacts while adverse environmental/health consequences are minimized.


Assuntos
Biocombustíveis , Nanoestruturas , Anaerobiose , Reatores Biológicos , Metano
13.
J Environ Sci (China) ; 43: 15-25, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155405

RESUMO

Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent.


Assuntos
Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Panicum/fisiologia , Poluentes do Solo/análise , Solo/química , Agricultura , Mudança Climática , Modelos Químicos , Chuva , Temperatura
14.
Environ Sci Pollut Res Int ; 31(12): 17760-17777, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37648915

RESUMO

The share of solar energy in the energy mix has become a major concern, and the global effort is to increase its contribution. Photovoltaic technology is an environment-friendly way of electricity production compared to fossil fuels. Currently, third generation of solar cells with a maximum average conversion efficiency of 20% has been achieved. Asia is an emerging market for photovoltaic technology, and it has recorded the highest installation capacity for 2018 (280 MW), 2030 (1860 MW), and 2050 (4837 MW). Meanwhile, Asia is estimated to be the highest producer of PV waste by 2040, with 5,580,000 metric tons of waste volume. Solid waste management is already a big environmental issue in South Asian countries, and untested landfilling of solar cells can further increase the burden. This review emphasizes the end-of-life scenario of solar cells in developing South Asian countries. Solar cell waste is hazardous e-waste that can lead to environmental and health impacts if not managed properly. It consists of metals with market value, which can be waste or gold, depending on its management. The study finds that recycling is the economically and environmentally effective waste management option for solar cells in South Asia. This paper reviews the deficiencies in the existing solar cell waste management framework in South Asian countries. Moreover, practical implications are presented for designing an effective waste management plan for solar cells in South Asian countries. Strong legislation, sufficient recycling infrastructure, and high stakeholders' interests are required to resolve this environmental concern.


Assuntos
Gerenciamento de Resíduos , Reciclagem , Ásia , Índia , Resíduos Sólidos , Ásia Meridional
15.
Sci Total Environ ; 931: 172967, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705297

RESUMO

The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Quimiotaxia , Biodegradação Ambiental
16.
Heliyon ; 10(11): e31235, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845869

RESUMO

Municipal solid waste management is a major concern in developing economies, requiring collective international efforts to achieve carbon neutrality by diverting waste from disposal facilities. This study aims to highlight the importance of the waste sector as it has the potential to significantly contribute to climate change and its toxicity impact on the local ecosystem. Out of the total municipal solid waste generated, only 78 % is collected, either open dumped or thrown in sanitary landfills. The waste sector's ecological impact value is calculated for the Earth's regions, and it is very high at >50 % in Africa, Asia, Latin America and the Caribbean. This sectoral impact value is mainly responsible for greenhouse gas emissions and degradation of the local ecosystem health. Current business‒as‒usual practices attribute 3.42 % of global emissions to the waste sector. Various scenarios are developed based on waste diversion and related emissions modelling, and it is found that scenarios 3 and 4 will support the policymakers of the regions in attaining zero carbon footprints in the waste sector. Our findings conclude that cost-effective nature-based solutions will help low‒income countries reduce emissions from disposal sites and significantly improve the local ecosystem's health. Developed economies have established robust waste‒handling policies and implementation frameworks, and there is a need for collaboration and knowledge sharing with developing economies at the regional level to sustain the sector globally.

17.
Environ Sci Pollut Res Int ; 30(13): 35945-35957, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538227

RESUMO

Semi-volatile organic compounds (SVOCs) are a major global problem that causes the greatest impact on urban settings and have been linked to bronchial asthma in both children and adults in Pakistan. The association between exposure of polycyclic aromatic hydrocarbons (PAHs) and asthma in the adult population is less clear. The current study aimed to assess the clinico-chemical parameters and blood levels of naphthalene phenanthrene, pyrene, and 1,2-benzanthracene and urinary levels of 1-OH pyrene and 1-OH phenanthrene as well as asthma-related biomarkers immunoglobulin E (IgE), resistin, and superoxide dismutase (SOD) of oxidative stress and other hematologic parameters in adults and their relationship with bronchial asthma. The GC/MS analysis showed higher mean concentrations of blood PAHs in asthma respondents (4.48 ± 1.34, 3.46 ± 1.04, 0.10 ± 0.03, and 0.29 ± 0.09) (ng/mL) as compared to controls (3.07 ± 0.92, 1.71 ± 0.51, 0.06 ± 0.02, and 0.11 ± 0.03) (ng/mL), with p = .006, p = .001, p = .050, and p = .001. Similarly, urinary levels of 1-OHpyr and 1-OHphe were significantly increased in adults with bronchial asthma (0.54 ± 0.16; 0.13 ± 0.04) (µmol/mol-Cr) than in controls (0.30 ± 0.09; 0.05 ± 0.02) (µmol/mol-Cr), with p = .002 and p = .0001, respectively, with a significant positive correlation to asthma severity. The asthma-related biomarkers IgE, resistin, and SOD were significantly higher (p 0.0001, 0.0001, and 0.0001) in people with asthma than in control persons. The findings showed that higher blood and urine PAHs levels were linked to higher asthma risk in adults and significant interaction with participants who smoked, had allergies, had a family history of asthma, and were exposed to dust. The current study's findings will be useful to local regulatory agencies in Lahore in terms of managing exposure and advocating efforts to minimize PAH pollution and manage health.


Assuntos
Asma , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Criança , Humanos , Adulto , Hidrocarbonetos Policíclicos Aromáticos/análise , Resistina , Pirenos , Biomarcadores , Asma/epidemiologia , Superóxido Dismutase
18.
Environ Sci Pollut Res Int ; 30(4): 8682-8697, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35220536

RESUMO

Air pollution levels rise as a result of industrial and vehicular emissions, epidemiological issues such as asthma become more prevalent in Lahore, Punjab, Pakistan and cause adverse public health effects. Many studies explored the association between air pollutants and frequency of asthma hospital visits, although their effects are unclear. This study examined the link between air pollution, asthma, and socioeconomic and demographic factors. A questionnaire survey was administered among four age groups (15-25, 25-45, 45-60, and over 60 years old) in public and private hospitals of Lahore city. Daily average concentrations of five air pollutants including carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter (PM2.5 and PM10) were recorded at ten fixed air monitoring sites in Lahore city. There were favorable connections between outpatient department (OPD) asthma visits (64%) and levels of outdoor air quality during winter season throughout the study period. The correlation between 1, 29, and 370 asthma patients and average daily air pollution levels found that the condition was more prevalent in females (53%) than males (47%). There was a significant correlation between PM10 exposure and asthma OPD visits in the city (p 0.001), as well as the elevated PM10 levels were substantially linked with OPD asthma visits over the winter season in the city. The hazard index (HI) for all adult population was estimated 0.001132. The study's findings indicate that exposure to ambient air pollution is a significant predictor of asthma hospital visits, particularly among the elderly. Strategies can be developed by policymakers in response to the worrying situation of allergic disease asthma in industrial cities due to air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Ozônio , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Asma/epidemiologia , Asma/induzido quimicamente , Cidades , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Grupos Populacionais , Dióxido de Enxofre/análise , Adolescente , Adulto Jovem
19.
Environ Sci Pollut Res Int ; 30(1): 1825-1840, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35921015

RESUMO

This study aims to evaluate municipal landfill sites' operational and financial viability, waste amount and characterization, primary and secondary collection systems, revenue generation from MSW, vehicle routing, and age of landfill sites located in Akhtarabad, Sahiwal Division. Three operational and financial models were developed to calculate cost/ton value based on obtained data. The obtained results indicate that the cost/ton values for models are the following: 20.01 USD for Model-1, 8.96 USD Model-2, and Model-3 is about 10.23 USD. The waste characterization represented waste consisting of compostable (57%), recyclable (10%), Refuse Derived Fuel (RDF) (12%), earth fill (20%), and disposable material (1%). Revenue/ton of municipal solid waste was about 19.47 USD, and according to cost-benefit analysis, the cost of Model-1 was higher than the benefit. In contrast, the costs of Model-2 and Model-3 were found to be lower than the revenue/ton. However, the waste collection efficiency of Model-1 was greater than both remaining models. The study concluded that utilizing all generated waste, only 21% of waste is dumped at the landfill site. It will reduce the area required for landfill sites from 431437 to 90602 m2 for the next 10 years and increase the age of landfill sites by over 20 years. It is recommended that the reuse of municipal solid waste and implementation of the no waste to landfill model would surely save money, land, and fuel, and it will also increase the age of landfill sites.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Cidades , Paquistão , Instalações de Eliminação de Resíduos , Gerenciamento de Resíduos/métodos
20.
Environ Pollut ; 326: 121474, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36965686

RESUMO

Recently, solar photovoltaic (PV) technology has shown tremendous growth among all renewable energy sectors. The attractiveness of a PV system depends deeply of the module and it is primarily determined by its performance. The quantity of electricity and power generated by a PV cell is contingent upon a number of parameters that can be intrinsic to the PV system itself, external or environmental. Thus, to improve the PV panel performance and lifetime, it is crucial to recognize the main parameters that directly influence the module during its operational lifetime. Among these parameters there are numerous factors that positively impact a PV system including the temperature of the solar panel, humidity, wind speed, amount of light, altitude and barometric pressure. On the other hand, the module can be exposed to simultaneous environmental stresses such as dust accumulation, shading and pollution factors. All these factors can gradually decrease the performance of the PV panel. This review not only provides the factors impacting PV panel's performance but also discusses the degradation and failure parameters that can usually affect the PV technology. The major points include: 1) Total quantity of energy extracted from a photovoltaic module is impacted on a daily, quarterly, seasonal, and yearly scale by the amount of dust formed on the surface of the module. 2) Climatic conditions as high temperatures and relative humidity affect the operation of solar cells by more than 70% and lead to a considerable decrease in solar cells efficiency. 3) The PV module current can be affected by soft shading while the voltage does not vary. In the case of hard shadowing, the performance of the photovoltaic module is determined by whether some or all of the cells of the module are shaded. 4) Compared to more traditional forms of energy production, PV systems offer a significant number of advantages to the environment. Nevertheless, these systems can procure greenhouse gas emissions, especially during the production stages. In conclusion, this study underlines the importance of considering multiple parameters while evaluating the performance of photovoltaic modules. Environmental factors can have a major impact on the performance of a PV system. It is critical to consider these factors, as well as intrinsic and other intermediate factors, to optimize the performance of solar energy systems. In addition, continuous monitoring and maintenance of PV systems is essential to ensure maximum efficiency and performance.


Assuntos
Gases de Efeito Estufa , Energia Solar , Poeira/análise , Umidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA