Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Mater ; 18(11): 1235-1243, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31209387

RESUMO

Creating well-defined single-crystal textures in materials requires the biaxial alignment of all grains into desired orientations, which is challenging to achieve in soft materials. Here we report the formation of single crystals with rigorously controlled texture over macroscopic areas (>1 cm2) in a soft mesophase of a columnar discotic liquid crystal. We use two modes of directed self-assembly, physical confinement and magnetic fields, to achieve control of the orientations of the columnar axes and the hexagonal lattice along orthogonal directions. Field control of the lattice orientation emerges in a low-temperature phase of tilted discogens that breaks the field degeneracy around the columnar axis present in non-tilted states. Conversely, column orientation is controlled by physical confinement and the resulting imposition of homeotropic anchoring at bounding surfaces. These results extend our understanding of molecular organization in tilted systems and may enable the development of a range of new materials for distinct applications.

2.
Angew Chem Int Ed Engl ; 57(50): 16442-16446, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30328650

RESUMO

The trinuclear copper(I) pyrazolate complex [Cu3 ] rearranges to the dinuclear analogue [Cu2 ⋅(C2 H4 )2 ] when exposed to ethylene gas. Remarkably, the [Cu3 ]↔[Cu2 ⋅(C2 H4 )2 ] rearrangement occurs reversibly in the solid state. Furthermore, this transformation emulates solution chemistry. The bond-making and breaking processes associated with the rearrangement in the solid-state result in an observed heat of adsorption (-13±1 kJ mol-1 per Cu-C2 H4 interaction) significantly lower than other Cu-C2 H4 interactions (≥-24 kJ mol-1 ). The low overall heat of adsorption, "step" isotherms, high ethylene capacity (2.76 mmol g-1 ; 7.6 wt % at 293 K), and high ethylene/ethane selectivity (136:1 at 293 K) make [Cu3 ] an interesting basis for the rational design of materials for low-energy ethylene/ethane separations.

3.
Acc Chem Res ; 49(4): 724-32, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27046045

RESUMO

The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane technology is particularly attractive due to its low energy operating cost, low maintenance, smaller equipment footprint, and relatively facile retrofit integration with existing power plant designs. From a techno-economic standpoint, the separation of CO2 from flue gas requires membranes that can process extremely high amounts of CO2 over a short time period, a property defined as the membrane "permeance". In contrast, the membrane's CO2/N2 selectivity has only a minor effect on the overall cost of some separation processes once a threshold permeability selectivity of ca. 20 is reached. Given the above criteria, the critical properties when developing membrane materials for postcombustion CO2 separation are CO2 permeability (i.e., the rate of CO2 transport normalized to the material thickness), a reasonable CO2/N2 selectivity (≥20), and the ability to be processed into defect-free thin-films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

4.
Macromol Rapid Commun ; 37(14): 1150-4, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27150278

RESUMO

Ionic liquid (IL)-based ion-gel membranes were prepared from a curable poly(IL)-based materials platform with the free ILs 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), bis(fluorosulfonyl)imide ([EMIM][FSI]), 1-butylimidazolium bis(trifluoromethylsulfonyl)imide ([C4 IMH][TFSI]), and ethylmethylammonium nitrate [EAN][NO3 ] and evaluated for their ionic conductivity performance at ambient and elevated temperatures. The resulting cross-linked, free-standing ion-gel membranes were found to have less than 1 wt% water (with the exception of [EAN][NO3 ] which contained ≈20 wt% water). Increasing free IL content from 50 to 80 wt% produces materials with ionic conductivity values ≥10(-2) S cm(-1) at 25 °C and ≈10(-1) S cm(-1) at 110 °C. Additionally, ion-gels containing 70 wt% of the protic ILs [C4 IMH][TFSI] and [EMIM][FSI] display ionic conductivity values of ≈10(-3) to 10(-2) S cm(-1) over the temperature range of 25-110 °C.


Assuntos
Reagentes de Ligações Cruzadas/química , Imidazóis/química , Líquidos Iônicos/química , Polímeros/química , Reagentes de Ligações Cruzadas/síntese química , Condutividade Elétrica , Géis/síntese química , Géis/química , Estrutura Molecular , Polímeros/síntese química , Temperatura
5.
Angew Chem Int Ed Engl ; 54(19): 5740-3, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25765760

RESUMO

Following removal of coordinated CH3 CN, the resulting complexes [Ag(I) (2,2'-bipyridine)][BF4 ] (1) and [Ag(I) (6,6'-dimethyl-2,2'-bipyridine)][OTf] (2) show ethene/ethane sorption selectivities of 390 and 340, respectively, and corresponding ethene sorption capacities of 2.38 and 2.18 mmol g(-1) when tested at an applied gas pressure of 90 kPa and a temperature of (20±1) °C. These ethene/ethane selectivities are 13 times higher than those reported for known solid sorbents for ethene/ethane separation. For 2, ethene sorption reached 90 % of equilibrium capacity within 15 minutes, and this equilibrium capacity was maintained over the three sorption/desorption cycles tested. The rates of ethene sorption were also measured. To our knowledge, these are the first complexes, designed for olefin/paraffin separations, which have open silver(I) sites. The high selectivities arise from these open silver(I) sites and the relatively low molecular surface areas of the complexes.

6.
Angew Chem Int Ed Engl ; 53(21): 5322-6, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24740816

RESUMO

Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

7.
Acc Chem Res ; 44(11): 1196-206, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21809809

RESUMO

Since their first synthesis in the 1940s, zeolites have found wide applications in catalysis, ion-exchange, and adsorption. Although the uniform, molecular-size pores of zeolites and their excellent thermal and chemical stability suggest that zeolites could be an ideal membrane material, continuous polycrystalline zeolite layers for separations were first prepared in the 1990s. Initial attempts to grow continuous zeolite layers on porous supports by in situ hydrothermal synthesis have resulted in membranes with the potential to separate molecules based on differences in molecular size and adsorption strength. Since then, further synthesis efforts have led to the preparation of many types of zeolite membranes and better quality membranes. However, the microstructure features of these membranes, such as defect size, number, and distribution as well as structure flexibility were poorly understood, and the fundamental mechanisms of permeation (adsorption and diffusion), especially for mixtures, were not clear. These gaps in understanding have hindered the design and control of separation processes using zeolite membranes. In this Account, we describe our efforts to characterize microstructures of zeolite membranes and to understand the fundamental adsorption and diffusion behavior of permeating solutes. This Account will focus on the MFI membranes which have been the most widely used but will also present results on other types of zeolite membranes. Using permeation, x-ray diffraction, and optical measurements, we found that the zeolite membrane structures are flexible. The size of defects changed due to adsorption and with variations in temperature. These changes in defect sizes can significantly affect the permeation properties of the membranes. We designed methods to measure mixture adsorption in zeolite crystals from the liquid phase, pure component adsorption in zeolite membranes, and diffusion through zeolite membranes. We hope that better understanding can lead to improved zeolite membranes and eventually facilitate the large-scale application of zeolite membranes to industrial separations.

8.
J Am Chem Soc ; 133(6): 1748-50, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21247111

RESUMO

Defect-free, microporous Al(2)O(3)/SAPO-34 zeolite composite membranes were prepared by coating hydrothermally grown zeolite membranes with microporous alumina using molecular layer deposition. These inorganic composite membranes are highly efficient for H(2) separation: their highest H(2)/N(2) mixture selectivity was 1040, in contrast with selectivities of 8 for SAPO-34 membranes. The composite membranes were selective for H(2) for temperatures up to at least 473 K and feed pressures up to at least 1.5 MPa; at 473 K and 1.5 MPa, the H(2)/N(2) separation selectivity was 750. The H(2)/CO(2) separation selectivity was lower than the H(2)/N(2) selectivity and decreased slightly with increasing pressure; the selectivity was 20 at 473 K and 1.5 MPa. The high H(2) selectivity resulted either because most of the pores in the Al(2)O(3) layer were slightly smaller than 0.36 nm (the kinetic diameter of N(2)) or because the Al(2)O(3) layer slightly narrowed the SAPO-34 pore entrance. These composite membranes may represent a new class of inorganic membranes for gas separation.

9.
J Am Chem Soc ; 133(17): 6650-8, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21473590

RESUMO

A series of novel organic cage compounds 1-4 were successfully synthesized from readily available starting materials in one-pot in decent to excellent yields (46-90%) through a dynamic covalent chemistry approach (imine condensation reaction). Covalently cross-linked cage framework 14 was obtained through the cage-to-framework strategy via the Sonogashira coupling of cage 4 with the 1,4-diethynylbenzene linker molecule. Cage compounds 1-4 and framework 14 exhibited exceptional high ideal selectivity (36/1-138/1) in adsorption of CO(2) over N(2) under the standard temperature and pressure (STP, 20 °C, 1 bar). Gas adsorption studies indicate that the high selectivity is provided not only by the amino group density (mol/g), but also by the intrinsic pore size of the cage structure (distance between the top and bottom panels), which can be tuned by judiciously choosing building blocks of different size. The systematic studies on the structure-property relationship of this novel class of organic cages are reported herein for the first time; they provide critical knowledge on the rational design principle of these cage-based porous materials that have shown great potential in gas separation and carbon capture applications.

10.
Acc Chem Res ; 43(1): 152-9, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19795831

RESUMO

Clean energy production has become one of the most prominent global issues of the early 21st century, prompting social, economic, and scientific debates regarding energy usage, energy sources, and sustainable energy strategies. The reduction of greenhouse gas emissions, specifically carbon dioxide (CO(2)), figures prominently in the discussions on the future of global energy policy. Billions of tons of annual CO(2) emissions are the direct result of fossil fuel combustion to generate electricity. Producing clean energy from abundant sources such as coal will require a massive infrastructure and highly efficient capture technologies to curb CO(2) emissions. Current technologies for CO(2) removal from other gases, such as those used in natural gas sweetening, are also capable of capturing CO(2) from power plant emissions. Aqueous amine processes are found in the vast majority of natural gas sweetening operations in the United States. However, conventional aqueous amine processes are highly energy intensive; their implementation for postcombustion CO(2) capture from power plant emissions would drastically cut plant output and efficiency. Membranes, another technology used in natural gas sweetening, have been proposed as an alternative mechanism for CO(2) capture from flue gas. Although membranes offer a potentially less energy-intensive approach, their development and industrial implementation lags far behind that of amine processes. Thus, to minimize the impact of postcombustion CO(2) capture on the economics of energy production, advances are needed in both of these areas. In this Account, we review our recent research devoted to absorptive processes and membranes. Specifically, we have explored the use of room-temperature ionic liquids (RTILs) in absorptive and membrane technologies for CO(2) capture. RTILs present a highly versatile and tunable platform for the development of new processes and materials aimed at the capture of CO(2) from power plant flue gas and in natural gas sweetening. The desirable properties of RTIL solvents, such as negligible vapor pressures, thermal stability, and a large liquid range, make them interesting candidates as new materials in well-known CO(2) capture processes. Here, we focus on the use of RTILs (1) as absorbents, including in combination with amines, and (2) in the design of polymer membranes. RTIL amine solvents have many potential advantages over aqueous amines, and the versatile chemistry of imidazolium-based RTILs also allows for the generation of new types of CO(2)-selective polymer membranes. RTIL and RTIL-based composites can compete with, or improve upon, current technologies. Moreover, owing to our experience in this area, we are developing new imidazolium-based polymer architectures and thermotropic and lyotropic liquid crystals as highly tailorable materials based on and capable of interacting with RTILs.

11.
J Am Chem Soc ; 132(24): 8285-90, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20504021

RESUMO

Gated ion diffusion is found widely in hydrophobic biological nanopores, upon changes in ligand binding, temperature, transmembrane voltage, and mechanical stress. Because water is the main media for ion diffusion in these hydrophobic biological pores, ion diffusion behavior through these nanochannels is expected to be influenced significantly when water wettability in hydrophobic biological nanopores is sensitive and changes upon small external changes. Here, we report for the first time that ion diffusion through highly hydrophobic nanopores (approximately 3 nm) showed a gated behavior due to change of water wettability on hydrophobic surface upon small temperature change or ultrasound. Dense carbon nanotube (CNT) membranes with both 3-nm CNTs and 3-nm interstitial pores were prepared by a solvent evaporation process and used as a model system to investigate ion diffusion behavior. Ion diffusion through these membranes exhibited a gated behavior. The ion flux was turned on and off, apparently because the water wettability of CNTs changed. At 298 K, ion diffusion through dense CNT membranes stopped after a few hours, but it dramatically increased when the temperature was increased 20 K or the membrane was subjected to ultrasound. Likewise, water adsorption on dense CNT membranes increased dramatically at a water activity of 0.53 when the temperature increased from 293 to 306 K, indicating capillary condensation. Water adsorption isotherms of dense CNT membranes suggest that the adsorbed water forms a discontinuous phase at 293 K, but it probably forms a continuous layer, probably in the interstitial CNT regions, at higher temperatures. When the ion diffusion channel was opened by a temperature increase or ultrasound, ions diffused through the CNT membranes at a rate similar to bulk diffusion in water. This finding may have implications for using CNT membrane for desalination and water treatment.


Assuntos
Membranas Artificiais , Nanotubos de Carbono/química , Adsorção , Difusão , Transporte de Íons , Porosidade , Sonicação , Temperatura
12.
Phys Chem Chem Phys ; 12(26): 7064-76, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20485804

RESUMO

Molecular dynamics simulations of fluoroalkyl-derivatized imidazolium:bis(trifluoromethylsulfonyl)imide (TFSI) room temperature ionic liquids (FADI-RTILs) with cations of the structure 1-F(CF(2))(n)(CH(2))(2)-3-methyl imidazolium have been performed and compared with simulations of alkyl-derivatized 1-H(CH(2))(n+2)-3-methyl imidazolium analogs (ADI-RTILs). Simulations yield RTIL densities, viscosities and ionic conductivities for the FADI-RTILs and ADI-RTILs in reasonably good agreement with experimental data. Partial fluorination results in a larger increase in density than would be anticipated based upon the density difference between perfluoralkane and alkane melts. Similarly, the slowing down in dynamics upon partial fluorination is greater than would be expected based upon the increase in cation volume. Examination of cation-cation, anion-anion and cation-anion centers-of-mass radial distribution functions reveal remarkably little influence of partial fluorination on the spherically averaged intermolecular structure of the RTILs. Similarly, simulations reveal little change in tail conformations and the extent of tail-tail aggregation upon partial fluorination. The interaction of the TFSI anion with the positively charged imidazolium ring hydrogen and nitrogen atoms is also little influenced by partial fluorination. However, the partially fluorinated alkyl tail exhibits increased interaction with the TFSI anion due to the electron withdrawing character of the fluorinated groups. We believe this strong tail-anion electrostatic interaction largely accounts for the higher than expected density and slower than expected dynamics in the FADI-RTILs.

13.
J Am Chem Soc ; 130(16): 5412-3, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18376813

RESUMO

SAPO-34 membranes were prepared by in situ crystallization on alpha-Al2O3 porous supports. The crystal size of the seeds was effectively controlled in the 0.7 to 8.5 micron range by employing different structure-directing agents. Seeds smaller than 1 micron produced membranes with CO2/CH4 separation selectivities higher than 170 and unprecedented CO2 permeances as high as 2.0 x 10(-6) mol/m2.s.Pa at 295 K and a feed pressure of 224 kPa. The membranes effectively separated CO2/CH4 mixtures up to 1.7 MPa.

14.
J Phys Chem B ; 112(8): 2335-9, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18247501

RESUMO

This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

15.
Chem Commun (Camb) ; 52(47): 7497-500, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27211060

RESUMO

A new type of poly(ionic liquid) membrane, which shows switchable hydrated states via lower critical solution temperature-type phase behaviour, enables concentration of some water-soluble proteins from aqueous media.


Assuntos
Citocromos c/análise , Peroxidase do Rábano Silvestre/análise , Líquidos Iônicos/química , Mioglobina/análise , Polímeros/química , Temperatura , Animais , Peroxidase do Rábano Silvestre/metabolismo , Cavalos , Estrutura Molecular , Água/química
16.
ACS Nano ; 10(1): 150-8, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26632964

RESUMO

Membrane separations are critically important in areas ranging from health care and analytical chemistry to bioprocessing and water purification. An ideal nanoporous membrane would consist of a thin film with physically continuous and vertically aligned nanopores and would display a narrow distribution of pore sizes. However, the current state of the art departs considerably from this ideal and is beset by intrinsic trade-offs between permeability and selectivity. We demonstrate an effective and scalable method to fabricate polymer films with ideal membrane morphologies consisting of submicron thickness films with physically continuous and vertically aligned 1 nm pores. The approach is based on soft confinement to control the orientation of a cross-linkable mesophase in which the pores are produced by self-assembly. The scalability, exceptional ease of fabrication, and potential to create a new class of nanofiltration membranes stand out as compelling aspects.

18.
Chem Commun (Camb) ; 50(43): 5745-7, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24752375

RESUMO

We report a non-porous silver(i) coordinated phenanthroline-based polymer, which exhibits a high ideal ethylene/ethane adsorption selectivity (15/1) and high ethylene uptake (5.0 mmol g(-1)) at ambient temperature and pressure. Both silver(i) coordination and polymer structures are important for the high uptake of ethylene.

19.
Chem Commun (Camb) ; 50(50): 6633-6, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24824879

RESUMO

A metal-containing ionic liquid (MCIL) has been prepared in which the [Co(II)(salicylate)2](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Líquidos Iônicos/química , Salicilatos/química , Água/química , Modelos Moleculares , Estrutura Molecular , Temperatura
20.
ACS Nano ; 8(12): 11977-86, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25345718

RESUMO

There is long-standing interest in developing membranes possessing uniform pores with dimensions in the range of 1 nm and physical continuity in the macroscopic transport direction to meet the needs of challenging small molecule and ionic separations. Here we report facile, scalabe fabrication of polymer membranes with vertically (i.e., along the through-plane direction) aligned 1 nm pores by magnetic-field alignment and subsequent cross-linking of a liquid crystalline mesophase. We utilize a wedge-shaped amphiphilic species as the building block of a thermotropic columnar mesophase with 1 nm ionic nanochannels, and leverage the magnetic anisotropy of the amphiphile to control the alignment of these pores with a magnetic field. In situ X-ray scattering and subsequent optical microscopy reveal the formation of highly ordered nanostructured mesophases and cross-linked polymer films with orientational order parameters of ca. 0.95. High-resolution transmission electron microscopy (TEM) imaging provides direct visualization of long-range persistence of vertically aligned, hexagonally packed nanopores in unprecedented detail, demonstrating high-fidelity retention of structure and alignment after photo-cross-linking. Ionic conductivity measurements on the aligned membranes show a remarkable 85-fold enhancement of conductivity over nonaligned samples. These results provide a path to achieving the large area control of morphology and related enhancement of properties required for high-performance membranes and other applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA