Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Clin Microbiol ; 61(8): e0025923, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37439675

RESUMO

Carbapenem-resistant Enterobacterales (CRE) are among the most concerning antibiotic resistance threats due to high rates of multidrug resistance, transmissibility in health care settings, and high mortality rates. We evaluated the potential for regional genomic surveillance to track the spread of blaKPC-carrying CRE (KPC-CRE) by using isolate collections from health care facilities in three U.S. states. Clinical isolates were collected from Connecticut (2017 to 2018), Minnesota (2012 to 2018), and Tennessee (2016 to 2017) through the U.S. Centers for Disease Control and Prevention's Multi-site Gram-negative Surveillance Initiative (MuGSI) and additional surveillance. KPC-CRE isolates were whole-genome sequenced, yielding 255 isolates from 214 patients across 96 facilities. Case report data on patient comorbidities, facility exposures, and interfacility patient transfer were extracted. We observed that in Connecticut, most KPC-CRE isolates showed evidence of importation from outside the state, with limited local transmission. In Minnesota, cases were mainly from sporadic importation and transmission of blaKPC-carrying Klebsiella pneumoniae ST258, and clonal expansion of blaKPC-carrying Enterobacter hormaechei ST171, primarily at a single focal facility and its satellite facilities. In Tennessee, we observed transmission of diverse strains of blaKPC-carrying Enterobacter and Klesbiella, with evidence that most derived from the local acquisition of blaKPC plasmids circulating in an interconnected regional health care network. Thus, the underlying processes driving KPC-CRE burden can differ substantially across regions and can be discerned through regional genomic surveillance. This study provides proof of concept that integrating genomic data with information on interfacility patient transfers can provide insights into locations and drivers of regional KPC-CRE burden that can enable targeted interventions.


Assuntos
Infecções por Klebsiella , beta-Lactamases , Humanos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Plasmídeos , Klebsiella pneumoniae/genética , Carbapenêmicos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/epidemiologia
2.
MMWR Morb Mortal Wkly Rep ; 71(28): 904-907, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35834423

RESUMO

As part of public health preparedness for infectious disease threats, CDC collaborates with other U.S. public health officials to ensure that the Laboratory Response Network (LRN) has diagnostic tools to detect Orthopoxviruses, the genus that includes Variola virus, the causative agent of smallpox. LRN is a network of state and local public health, federal, U.S. Department of Defense (DOD), veterinary, food, and environmental testing laboratories. CDC developed, and the Food and Drug Administration (FDA) granted 510(k) clearance* for the Non-variola Orthopoxvirus Real-time PCR Primer and Probe Set (non-variola Orthopoxvirus [NVO] assay), a polymerase chain reaction (PCR) diagnostic test to detect NVO. On May 17, 2022, CDC was contacted by the Massachusetts Department of Public Health (DPH) regarding a suspected case of monkeypox, a disease caused by the Orthopoxvirus Monkeypox virus. Specimens were collected and tested by the Massachusetts DPH public health laboratory with LRN testing capability using the NVO assay. Nationwide, 68 LRN laboratories had capacity to test approximately 8,000 NVO tests per week during June. During May 17-June 30, LRN laboratories tested 2,009 specimens from suspected monkeypox cases. Among those, 730 (36.3%) specimens from 395 patients were positive for NVO. NVO-positive specimens from 159 persons were confirmed by CDC to be monkeypox; final characterization is pending for 236. Prompt identification of persons with infection allowed rapid response to the outbreak, including isolation and treatment of patients, administration of vaccines, and other public health action. To further facilitate access to testing and increase convenience for providers and patients by using existing provider-laboratory relationships, CDC and LRN are supporting five large commercial laboratories with a national footprint (Aegis Science, LabCorp, Mayo Clinic Laboratories, Quest Diagnostics, and Sonic Healthcare) to establish NVO testing capacity of 10,000 specimens per week per laboratory. On July 6, 2022, the first commercial laboratory began accepting specimens for NVO testing based on clinician orders.


Assuntos
Técnicas e Procedimentos Diagnósticos , Surtos de Doenças , Mpox , Surtos de Doenças/prevenção & controle , Humanos , Laboratórios , Mpox/diagnóstico , Mpox/epidemiologia , Orthopoxvirus , Estados Unidos/epidemiologia , Vírus da Varíola
3.
Front Vet Sci ; 8: 744055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869720

RESUMO

The objective of this study was to determine sources of Shiga toxin-producing Escherichia coli O157 (STEC O157) infection among visitors to Farm X and develop public health recommendations. A case-control study was conducted. Case-patients were defined as the first ill child (aged <18 years) in the household with laboratory-confirmed STEC O157, or physician-diagnosed hemolytic uremic syndrome with laboratory confirmation by serology, who visited Farm X in the 10 days prior to illness. Controls were selected from Farm X visitors aged <18 years, without symptoms during the same time period as case-patients. Environment and animal fecal samples collected from Farm X were cultured; isolates from Farm X were compared with patient isolates using whole genome sequencing (WGS). Case-patients were more likely than controls to have sat on hay bales at the doe barn (adjusted odds ratio: 4.55; 95% confidence interval: 1.41-16.13). No handwashing stations were available; limited hand sanitizer was provided. Overall, 37% (29 of 78) of animal and environmental samples collected were positive for STEC; of these, 62% (18 of 29) yielded STEC O157 highly related by WGS to patient isolates. STEC O157 environmental contamination and fecal shedding by goats at Farm X was extensive. Farms should provide handwashing stations with soap, running water, and disposable towels. Access to animal areas, including animal pens and enclosures, should be limited for young children who are at risk for severe outcomes from STEC O157 infection. National recommendations should be adopted to reduce disease transmission.

4.
Clin Cancer Res ; 13(3): 965-71, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17289892

RESUMO

PURPOSE: Chemotherapy-induced diarrhea occurs secondary to mucosal inflammation and may be cyclooxygenase-2 mediated. Cyclooxygenase-2 inhibitors may ameliorate chemotherapy-induced mucosal toxicity and enhance its antitumor effect. We investigated this hypothesis in the Ward colorectal cancer rat model and in a phase I clinical study. EXPERIMENTAL DESIGN: In the Ward rat model, irinotecan was given daily x 3 or weekly x 4 with or without celecoxib. In the phase I clinical study, we planned to escalate the dose of irinotecan in the FOLFIRI regimen (irinotecan, 5-fluorouracil, and leucovorin) with a fixed dose of celecoxib. Irinotecan was escalated in four dose levels: 180, 200, 220, and 260 mg/m2. Celecoxib was administered as 400 mg, twice daily starting on day 2 of cycle 1. Pharmacokinetics of irinotecan, SN-38, and SN-38G were obtained on days 1 and 14. A standard 3+3 dose escalation scheme was used. Plasma concentrations of irinotecan, SN-38, and SN-38G were measured using high-pressure liquid chromatography. RESULTS: Celecoxib ameliorated diarrhea, weight loss, and lethality and resulted in synergistic antitumor effect in the rat model. Twelve patients with advanced cancers were enrolled and evaluable for dose-limiting toxicity (DLT). Diarrhea was the cause for discontinuation in one. Grade 2 and 3 diarrhea occurred in three and two patients, respectively. One patient had DLT at dose level 2 (grade 3 diarrhea). Two had a DLT at DL3 (G3 emesis and myocardial infarct). Celecoxib had limited influence on the pharmacokinetics of irinotecan in this data set. CONCLUSIONS: Maximum tolerated dose of irinotecan in FOLFIRI schedule with celecoxib is 200 mg/m2.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Mucosite/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Pirazóis/administração & dosagem , Pirazóis/uso terapêutico , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Camptotecina/administração & dosagem , Camptotecina/uso terapêutico , Celecoxib , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fluoruracila/uso terapêutico , Glucuronatos/administração & dosagem , Humanos , Mucosa Intestinal/patologia , Irinotecano , Leucovorina/uso terapêutico , Masculino , Dose Máxima Tolerável , Transplante de Neoplasias , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA