Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Virus Res ; 323: 198969, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36257487

RESUMO

Begomoviruses (single-stranded DNA plant viruses transmitted by whiteflies) are economically important pathogens causing epidemics worldwide. Tomato-infecting begomoviruses emerged in Brazil in the 1990's following the introduction of Bemisia tabaci Middle East-Asia Minor 1. It is believed that these viruses evolved from indigenous viruses infecting non-cultivated hosts. However, tomato-infecting viruses are rarely found in non-cultivated hosts, and vice-versa. It is possible that viral populations in a given host are composed primarily of viruses which are well adapted to this host, but also include a small proportion of poorly adapted viruses. Following transfer to a new host, the composition of the viral population would shift rapidly, with the viruses which are better adapted to the new host becoming predominant. To test this hypothesis, we collected tomato and Sida plants growing next to each other at two locations in 2014 and 2018. Total DNA was extracted from tomato and Sida samples from each location and year and used as a template for high-throughput sequencing. Reads were mapped following a highly stringent set of criteria. For the 2014 samples, >98% of the Sida reads mapped to Sida micrantha mosaic virus (SiMMV), but 0.1% of the reads mapped to tomato severe rugose virus (ToSRV). Conversely, >99% of the tomato reads mapped to ToSRV, with 0.18% mapping to SiMMV. For the 2018 samples, 41% of the Sida reads mapped to three Sida-adapted viruses and 0.1% of the reads mapped to ToSRV, while 99.9% of the tomato reads mapped to ToSRV. These results are consistent with the hypothesis that viral populations in a single plant are composed primarily of the virus that is better adapted to the host but also include a small proportion of viruses that are poorly adapted.

2.
Viruses ; 15(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896851

RESUMO

Mixed infection between two or more begomoviruses is commonly found in tomato fields and can affect disease outcomes by increasing symptom severity and viral accumulation compared with single infection. Viruses that affect tomato include tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV). Previous work showed that in mixed infection, ToRMV negatively affects the infectivity and accumulation of ToSRV. ToSRV and ToRMV share a high degree of sequence identity, including cis-elements in the common region (CR) and their specific recognition sites (iteron-related domain, IRD) within the Rep gene. Here, we investigated if divergent sites in the CR and IRD are involved in the interaction between these two begomoviruses. ToSRV clones were constructed containing the same nucleotides as ToRMV in the CR (ToSRV-A(ToR:CR)), IRD (ToSRV-A(ToR:IRD)) and in both regions (ToSRV-A(ToR:CR+IRD)). When plants were co-inoculated with ToRMV and ToSRV-A(ToR:IRD), the infectivity and accumulation of ToSRV were negatively affected. In mixed inoculation of ToRMV with ToSRV-A(ToR:CR), high infectivity of both viruses and high DNA accumulation of ToSRV-A(ToR:CR) were observed. A decrease in viral accumulation was observed in plants inoculated with ToSRV-A(ToR:CR+IRD). These results indicate that differences in the CR, but not the IRD, are responsible for the negative interference of ToRMV on ToSRV.


Assuntos
Begomovirus , Coinfecção , Vírus do Mosaico , Solanum lycopersicum , Begomovirus/genética , Nucleotídeos , Doenças das Plantas , Plantas , DNA Viral/genética , Vírus do Mosaico/genética
3.
Pathogens ; 10(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34684193

RESUMO

Begomoviruses can be found in association with alphasatellites, which are capable of autonomous replication but are dependent on the helper begomovirus for systemic infection, encapsidation and vector transmission. Previous studies suggest that the presence of NW alphasatellites (genus Clecrusatellite) is associated with more severe symptoms. To better understand this interaction, we investigated the effects of two alphasatellites on infectivity, symptom development, viral DNA accumulation and vector transmission of three begomoviruses in three hosts. In tomato and Nicotiana benthamiana, all combinations were infectious. In Leonurus sibiricus, only the ToYSV/ToYSA combination was infectious. The presence of EuYMA increased symptom severity of EuYMV and ToYSV in N. benthamiana, and the presence of ToYSA was associated with more severe symptoms of ToYSV in N. benthamiana and L. sibiricus. EuYMA increased the accumulation of ToYSV in N. benthamiana but reduced the accumulation of EuYMV in tomato and of ToSRV in N. benthamiana. The presence of ToYSA decreased the accumulation of ToYSV in N. benthamiana and L. sibiricus. ToYSA negatively affected transmission of ToSRV by Bemisia tabaci MEAM1. Together, our results indicate that NW alphasatellites can interact with different begomoviruses, increasing symptom severity and interfering in the transmission of the helper begomovirus. Understanding this interaction is important as it may affect the emergence of diseases caused by begomovirus-alphasatellite complexes in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA