Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(1): 109-116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31544954

RESUMO

Red wine production begins with a simultaneous fermentation and solid-phase extraction process. Red wine color and mouthfeel is the result of the extraction of phenolics from grape skins and seeds during fermentation, where extraction is a strong function of temperature and ethanol concentration. During fermentation, grape solids form a porous "cap" at the top of the fermentor, resulting in a heterogeneous fermentation system with significant temperature and concentration gradients. In this work, we present a spatial, time-variant reactor engineering model for phenolic extraction during red wine fermentation, incorporating fermentation kinetics, mass transfer, heat transfer, compressible fluid flow, and phenolic extraction kinetics. The temperature and ethanol concentration profiles predicted by this model allow for the calculation of phenolic extraction rates over the course of fermentation. Phenolic extraction predictions were validated against prior experimental data to good agreement and compared to a well-mixed model's predictions to show the utility of a spatial model over well-mixed models.


Assuntos
Engenharia Química/métodos , Modelos Químicos , Fenóis/isolamento & purificação , Vitis/química , Vinho/análise , Fermentação/fisiologia , Fenóis/química
2.
Molecules ; 24(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986909

RESUMO

Phenolic extraction is a critical part of red wine making. Though empirical models of phenolic extraction kinetics exist, the current level of mechanistic understanding does not allow for accurate predictions. In this work, we propose a mechanistic model for the extraction of phenolics from grape skins and seeds as a function of temperature and ethanol. This model examines the release of phenolics, the adsorption of phenolics onto grape material, and the disappearance of anthocyanins from solution. Additionally, we performed epifluorescence microscopy to explore our finding that seed tannins' release rate appears independent of concentration, and found that the grape seed appears to ablate over fermentation. We also determined the activation energy of anthocyanin disappearance, in good agreement with similar systems. The proposed model results in an excellent fit, and increases the understanding of phenolic extraction and the ability to predict and optimize product outcome in red wine making.


Assuntos
Fenóis/química , Vitis/química , Vinho , Etanol/química , Fermentação/fisiologia , Sementes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA