Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 116(4): 603-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27464459

RESUMO

Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.


Assuntos
Bacillus coagulans , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/administração & dosagem , Suplementos Nutricionais , Glycine max , Mucosa Intestinal/metabolismo , Extratos Vegetais/metabolismo , Prebióticos , Animais , Intestinos/microbiologia , Ratos , Simbióticos
2.
Biosci Biotechnol Biochem ; 79(6): 937-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774422

RESUMO

The signal molecule, 3-oxo-C12-homoserine lactone (3-oxo-C12-HSL), is similar to a mammalian hormone in bacteria. Although most studies have examined the effects of high 3-oxo-C12-HSL concentrations (>200 µM) on mammalian cellular functions because ~600 µM 3-oxo-C12-HSL can be secreted in biofilms of Pseudomonas aeruginosa grown in vitro, we previously showed that a low 3-oxo-C12-HSL concentration (30 µM) induces the apoptosis of undifferentiated Caco-2 cells through suppressing Akt activity. Here, we found that a low concentration of 3-oxo-C12-HSL-activated ERK1/2 in undifferentiated Caco-2 cells. Incubating cells with the ERK pathway inhibitor U0126 for 30 min alleviated the mucin 3 (MUC3) expression suppressed by 3-oxo-C12-HSL, and the upregulation of MUC3 expression induced by a 48-h incubation with U0126-reduced cell death. Thus, altered MUC3 expression caused by long-term attenuated ERK1/2 activity might correlate with the death of undifferentiated Caco-2 cells induced by 3-oxo-C12-HSL.


Assuntos
4-Butirolactona/análogos & derivados , Homosserina/análogos & derivados , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mucina-3/genética , Regulação para Cima/efeitos dos fármacos , 4-Butirolactona/farmacologia , Células CACO-2 , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Homosserina/farmacologia , Humanos
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(12): 158811, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32896622

RESUMO

There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4ß-hydroxycholesterol (4ßOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4ßOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4ßOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Disbiose/metabolismo , Hidroxicolesteróis/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Ácidos Cólicos/metabolismo , Ácido Desoxicólico/metabolismo , Disbiose/etiologia , Hidroxilação , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Ratos , Ratos Wistar , Ácido Taurocólico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA