Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Rev Lett ; 119(25): 255001, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29303297

RESUMO

We report an experimental observation of the coupling of the transverse vertical and longitudinal in-plane dust-lattice wave modes in a two-dimensional complex plasma crystal in the absence of mode crossing. A new large-diameter rf plasma chamber was used to suspend the plasma crystal. The observations are confirmed with molecular dynamics simulations. The coupling manifests itself in traces of the transverse vertical mode appearing in the measured longitudinal spectra and vice versa. We calculate the expected ratio of the trace to the principal mode with a theoretical analysis of the modes in a crystal with finite temperature and find good agreement with the experiment and simulations.

2.
Phys Rev Lett ; 118(7): 075002, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256868

RESUMO

The wake-mediated propulsion of an "extra" particle in a channel of two neighboring rows of a two-dimensional plasma crystal, observed experimentally by Du et al. [Phys. Rev. E 89, 021101(R) (2014)PRESCM1539-375510.1103/PhysRevE.89.021101], is explained in simulations and theory. We use the simple model of a pointlike ion wake charge to reproduce this intriguing effect in simulations, allowing for a detailed investigation and a deeper understanding of the underlying dynamics. We show that the nonreciprocity of the particle interaction, owing to the wake charges, is responsible for a broken symmetry of the channel that enables a persistent self-propelled motion of the extra particle. We find good agreement of the terminal extra-particle velocity with our theoretical considerations and with experiments.

3.
Klin Khir ; (1): 70-3, 2017.
Artigo em Ucraniano | MEDLINE | ID: mdl-30272926

RESUMO

The results of training in Odessa National Medical University 36 students on the virtual endoscopy simulator "Basic laparoscopic skills" were generalized. We determined self-learner ratio of the questionnaires, practical skills coefficient estimated check-lists, the resulting ratio of practical skills for each group. These coefficients were effective for the overall assessment and reliable calculations of long-term survival skills.


Assuntos
Educação de Pós-Graduação em Medicina/métodos , Laparoscopia/educação , Memória de Longo Prazo/fisiologia , Treinamento por Simulação/métodos , Estudantes de Medicina/psicologia , Feminino , Humanos , Masculino , Modelos Anatômicos , Autoavaliação (Psicologia) , Inquéritos e Questionários , Fatores de Tempo , Adulto Jovem
4.
Sci Rep ; 13(1): 12880, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553456

RESUMO

GaAsBi nanowires represent a novel and promising material platform for future nano-photonics. However, the growth of high-quality GaAsBi nanowires and GaAsBi alloy is still a challenge due to a large miscibility gap between GaAs and GaBi. In this work we investigate effects of Bi incorporation on lattice dynamics and carrier recombination processes in GaAs/GaAsBi core/shell nanowires grown by molecular-beam epitaxy. By employing photoluminescence (PL), PL excitation, and Raman scattering spectroscopies complemented by scanning electron microscopy, we show that increasing Bi-beam equivalent pressure (BEP) during the growth does not necessarily result in a higher alloy composition but largely affects the carrier localization in GaAsBi. Specifically, it is found that under high BEP, bismuth tends either to be expelled from a nanowire shell towards its surface or to form larger clusters within the GaAsBi shell. Due to these two processes the bandgap of the Bi-containing shell remains practically independent of the Bi BEP, while the emission spectra of the NWs experience a significant red shift under increased Bi supply as a result of the localization effect.

5.
Phys Rev Lett ; 108(13): 135005, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540710

RESUMO

The microstructure of a strongly coupled liquid undergoing a shear flow was studied experimentally. The liquid was a shear melted two-dimensional plasma crystal, i.e., a single-layer suspension of micrometer-size particles in a rf discharge plasma. Trajectories of particles were measured using video microscopy. The resulting microstructure was anisotropic, with compressional and extensional axes at around ±45° to the flow direction. Corresponding ellipticity of the pair correlation function g(r) or static structure factor S(k) gives the (normalized) shear rate of the flow.

6.
Phys Rev E ; 105(1-2): 015210, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193236

RESUMO

In this article, the stability of a complex plasma monolayer levitating in the sheath of the powered electrode of an asymmetric capacitively coupled radio-frequency argon discharge is studied. Compared to earlier studies, a better integration of the experimental results and theory is achieved by operating with actual experimental control parameters such as the gas pressure and the discharge power. It is shown that for a given microparticle monolayer at a fixed discharge power there exist two threshold pressures: (i) above a specific pressure p_{cryst}, the monolayer always crystallizes; (ii) below a specific pressure p_{MCI}, the crystalline monolayer undergoes the mode-coupling instability and the two-dimensional complex plasma crystal melts. In between p_{MCI} and p_{cryst}, the microparticle monolayer can be either in the fluid phase or the crystal phase: when increasing the pressure from below p_{MCI}, the monolayer remains in the fluid phase until it reaches p_{cryst} at which it recrystallizes; when decreasing the pressure from above p_{cryst}, the monolayer remains in the crystalline phase until it reaches p_{MCI} at which the mode-coupling instability is triggered and the crystal melts. A simple self-consistent sheath model is used to calculate the rf sheath profile, the microparticle charges, and the microparticle resonance frequency as a function of power and background argon pressure. Combined with calculation of the lattice modes the main trends of p_{MCI} as a function of power and background argon pressure are recovered. The threshold of the mode-coupling instability in the crystalline phase is dominated by the crossing of the longitudinal in-plane lattice mode and the out-of plane lattice mode induced by the change of the sheath profile. Ion wakes are shown to have a significant effect too.

7.
Phys Rev Lett ; 106(15): 155002, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568566

RESUMO

The speed-stress relation for gliding edge dislocations was experimentally measured for the first time. The experimental system used, a two-dimensional plasma crystal, allowed observation of individual dislocations at the "atomistic" level and in real time. At low applied stress dislocations moved subsonically, at higher stress their speed abruptly increased to 1.9 times the speed of shear waves, then slowly grew with stress. There is evidence that immediately after nucleation dislocations can move faster than pressure waves.

8.
Phys Rev Lett ; 104(19): 195001, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866969

RESUMO

Dedicated experiments on melting of two-dimensional plasma crystals were carried out. The melting was always accompanied by spontaneous growth of the particle kinetic energy, suggesting a universal plasma-driven mechanism underlying the process. By measuring three principal dust-lattice wave modes simultaneously, it is unambiguously demonstrated that the melting occurs due to the resonance coupling between two of the dust-lattice modes. The variation of the wave modes with the experimental conditions, including the emergence of the resonant (hybrid) branch, reveals exceptionally good agreement with the theory of mode-coupling instability.

9.
Phys Rev Lett ; 103(21): 215001, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20366043

RESUMO

Spectra of phonons with out-of-plane polarization were studied experimentally in a 2D plasma crystal. The dispersion relation was directly measured for the first time using a novel method of particle imaging. The out-of-plane mode was proven to have negative optical dispersion at small wave numbers, comparison with theory showed good agreement. The effect of the plasma wakes on the dispersion relation is briefly discussed.

10.
Phys Rev E ; 97(4-1): 043206, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758736

RESUMO

The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

11.
Phys Rev E ; 96(1-1): 011201, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347228

RESUMO

Spontaneous formation of spinning pairs of particles, or torsions, is studied in a single-layer complex plasma crystal by reducing the discharge power at constant neutral gas pressure. At higher gas pressures, torsions spontaneously form below a certain power threshold. Further reduction of the discharge power leads to the formation of multiple torsions. However, at lower gas pressures the torsion formation is preceded by mode-coupling instability (MCI). The crystal dynamics are studied with the help of the fluctuation spectra of crystal particles' in-plane velocities. Surprisingly, the spectra of the crystal with torsions and MCI are rather similar and contain hot spots at similar locations on the (k,ω) plane, despite very different appearances of the respective particle trajectories. The torsion rotation speed is close (slightly below) to the maximum frequency of the in-plane compressional mode. When multiple torsions form, their rotation speeds are distributed in a narrow range slightly below the maximum frequency.

12.
Nanoscale Res Lett ; 12(1): 157, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28249369

RESUMO

The influence of calcination temperature on copper spatial localization in Y-stabilized ZrO2 powders was studied by attenuated total reflection, diffuse reflectance, electron paramagnetic resonance, transmission electron microscopy, electron energy loss, and energy-dispersive X-ray spectroscopies. It was found that calcination temperature rise in the range of 500-700 °C caused the increase of copper concentration in the volume of ZrO2 nanocrystals. This increase was due to Cu in-diffusion from surface complexes that contained copper ions linked with either water molecules or OH groups. This copper in-diffusion led also to an enhancement of absorption band peaked at ~270 nm that was ascribed to the formation of additional oxygen vacancies in nanocrystal volume. Further increasing of calcination temperature from 800 up to 1000 °C resulted in outward Cu diffusion accompanied by a decrease of the intensity of the 270-nm absorption band (i.e., oxygen vacancies' number), the transformation of ZrO2 tetragonal (cubic) phase to monoclinic one as well as the enhancement of absorption band of dispersed and crystalline CuO in the 600-900 nm range.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 2): 016401, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16486282

RESUMO

Bispectral analysis was used to study the nonlinear interaction of compressional waves in a two-dimensional strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was suspended in a plasma sheath. The microspheres interacted with a Yukawa potential and formed a triangular lattice. Two sinusoidal pump waves with different frequencies were excited in the lattice by pushing the particles with modulated Ar+ laser beams. Coherent nonlinear interaction of the pump waves was shown to be the mechanism of generating waves at the sum, difference, and other combination frequencies. However, coherent nonlinear interaction was ruled out for certain combination frequencies, in particular, for the difference frequency below an excitation-power threshold, as predicted by theory.

14.
Phys Rev E ; 93(3): 031201, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078284

RESUMO

An interferometric imaging technique has been proposed to instantly measure the diameter of individual spherical dust particles suspended in a gas discharge plasma. The technique is based on the defocused image analysis of both spherical particles and their binary agglomerates. Above a critical diameter, the defocused images of spherical particles contain stationary interference fringe patterns and the fringe number increases with particle diameters. Below this critical diameter, the particle size has been measured using the rotational interference fringe patterns which appear only on the defocused images of binary agglomerates. In this case, a lower cutoff limit of particle diameter has been predicted, below which no such rotational fringe patterns are observed for the binary agglomerates. The method can be useful as a diagnostics for complex plasma experiments on earth as well as under microgravity conditions.

15.
Phys Rev E ; 93(5): 053202, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300990

RESUMO

A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.

16.
Rev Sci Instrum ; 87(3): 033505, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036775

RESUMO

Three-dimensional (3D) imaging of a single-layer plasma crystal was performed using a commercial plenoptic camera. To enhance the out-of-plane oscillations of particles in the crystal, the mode-coupling instability (MCI) was triggered in it by lowering the discharge power below a threshold. 3D coordinates of all particles in the crystal were extracted from the recorded videos. All three fundamental wave modes of the plasma crystal were calculated from these data. In the out-of-plane spectrum, only the MCI-induced hot spots (corresponding to the unstable hybrid mode) were resolved. The results are in agreement with theory and show that plenoptic cameras can be used to measure the 3D dynamics of plasma crystals.

17.
Rev Sci Instrum ; 87(9): 093505, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782568

RESUMO

New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of µm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

18.
Artigo em Inglês | MEDLINE | ID: mdl-26172809

RESUMO

A theory of wave modes in shear-deformed two-dimensional plasma crystals is presented. Modification of the dispersion relations upon the pure and simple shear, and the resulting effect on the onset of the mode-coupling instability, are studied. In particular, it is explained why the velocity fluctuation spectra measured in experiments with sheared crystals exhibit asymmetric "hot spots": It is shown that the coupling of the in-plane compressional and the out-of-plane modes, leading to the formation of an unstable hybrid mode and generation of the hot spots, is enhanced in a certain direction determined by deformation.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(4 Pt 2): 046402, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14683049

RESUMO

A modified Korteweg-de Vries (KdV) equation is obtained for studying the propagation of nonlinear compressional waves and pulses in a chain of particles including the effect of damping. Suitably altering the linear phase velocity makes this equation useful also for the problem of phonon propagation in a two-dimensional (2D) lattice. Assuming a Yukawa potential, we use this method to model compressional wave propagation in a 2D plasma crystal, as in a recent experiment. By integrating the modified KdV equation the pulse is allowed to evolve, and good agreement with the experiment is found. It is shown that the speed of a compressional pulse increases with its amplitude, while the speed of a rarefactive pulse decreases. It is further discussed how the drag due to the background gas has a crucial role in weakening nonlinear effects and preventing the emergence of a soliton.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 2): 056409, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14682896

RESUMO

Wakes composed of compressional and shear waves were studied experimentally in a two-dimensional screened-Coulomb crystal. Highly charged microspheres suspended in a plasma settled in a horizontal monolayer and arranged in a triangular lattice with a repulsive interparticle potential. Wakes were excited by a moving spot of Ar+ laser light. Depending on the laser spot speed, compressional waves formed a Mach cone and multiple lateral or transverse wakes, similar to ship wakes on the water surface, due to a combination of acoustic and dispersive properties. Shear waves, however, formed only a Mach cone, due to their nearly acoustic, i.e., dispersionless character. The experimental results show agreement with a recently developed theory and with molecular dynamics simulations, which assume a binary Yukawa interparticle potential. A generally useful method is presented for calculating the real part of the dispersion relation of the compressional waves based on the analysis of the spatial structure of a phonon wake. Fitting the resulting dispersion relation provides an independent measure of the interparticle potential, parametrized by the screening parameter kappa and particle charge Q.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA