Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 46(4): e2300169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38344836

RESUMO

In this paper, we redefine the target of evolutionary explanations by proposing the "evosystem" as an alternative to populations, lineages and species. Evosystems account for changes in the distribution of heritable variation within individual Darwinian populations (evolution by natural selection, drift, or constructive neutral evolution), but also for changes in the networks of interactions within or between Darwinian populations and changes in the abiotic environment (whether these changes are caused by the organic entities or not). The evosystem can thereby become a centerpiece for a redefined evolutionary science, that is, evolutionary studies, that apprehends through a single framework the variety of evolutionary processes that lie at various scales. To illustrate the importance of this broadened perspective on evolution, we use a case of antimicrobial resistance evolution: the spread of the blaNDM gene family and the related resistance to carbapenem antibiotics observed globally, and show how evolutionary studies can contribute to answering contemporary socially relevant challenges.


Assuntos
Evolução Biológica , Seleção Genética
2.
J Eukaryot Microbiol ; 70(4): e12972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36847544

RESUMO

Protist plankton are major members of open-water marine food webs. Traditionally divided between phototrophic phytoplankton and phagotrophic zooplankton, recent research shows many actually combine phototrophy and phagotrophy in the one cell; these protists are the "mixoplankton." Under the mixoplankton paradigm, "phytoplankton" are incapable of phagotrophy (diatoms being exemplars), while "zooplankton" are incapable of phototrophy. This revision restructures marine food webs, from regional to global levels. Here, we present the first comprehensive database of marine mixoplankton, bringing together extant knowledge of the identity, allometry, physiology, and trophic interactivity of these organisms. This mixoplankton database (MDB) will aid researchers that confront difficulties in characterizing life traits of protist plankton, and it will benefit modelers needing to better appreciate ecology of these organisms with their complex functional and allometric predator-prey interactions. The MDB also identifies knowledge gaps, including the need to better understand, for different mixoplankton functional types, sources of nutrition (use of nitrate, prey types, and nutritional states), and to obtain vital rates (e.g. growth, photosynthesis, ingestion, factors affecting photo' vs. phago' -trophy). It is now possible to revisit and re-classify protistan "phytoplankton" and "zooplankton" in extant databases of plankton life forms so as to clarify their roles in marine ecosystems.


Assuntos
Ecossistema , Plâncton , Animais , Plâncton/fisiologia , Eucariotos/fisiologia , Fitoplâncton , Zooplâncton/fisiologia , Cadeia Alimentar , Oceanos e Mares
3.
Environ Microbiol ; 24(7): 2979-2993, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621046

RESUMO

Ribosomal RNA (rRNA) genes are known to be valuable markers for the barcoding of eukaryotic life and its phylogenetic classification at various taxonomic levels. The large-scale exploration of environmental microbial diversity through metabarcoding approaches has been focused mainly on the V4 and V9 regions of the 18S rRNA gene. The accurate interpretation of such environmental surveys is hampered by technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-genomic variability). Here we explored the intra-genomic diversity of Nassellaria and Spumellaria specimens (Radiolaria) by comparing Sanger sequencing with Illumina and Oxford Nanopore Technologies (MinION). Our analysis determined that intra-genomic variability of Nassellaria and Spumellaria is generally low, yet some Spumellaria specimens showed two different copies of the V4 with <97% similarity. Of the different sequencing methods, Illumina showed the highest number of contaminations (i.e. environmental DNA, cross-contamination, tag-jumping), revealed by its high sequencing depth; and MinION showed the highest sequencing rate error (~14%). Yet the long reads produced by MinION (~2900 bp) allowed accurate phylogenetic reconstruction studies. These results highlight the requirement for a careful interpretation of Illumina-based metabarcoding studies, in particular regarding low abundant amplicons, and open future perspectives towards full-length rDNA environmental metabarcoding surveys.


Assuntos
Rhizaria , Genes de RNAr , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Rhizaria/genética , Análise de Sequência de DNA
4.
Environ Microbiol ; 24(4): 1731-1745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783136

RESUMO

Protists play a fundamental role in all ecosystems, but we are still far from estimating the total diversity of many lineages, in particular in highly diverse environments, such as freshwater. Here, we survey the protist diversity of the Paraná River using metabarcoding, and we applied an approach that includes sequence similarity and phylogeny to evaluate the degree of genetic novelty of the protists' communities against the sequences described in the reference database PR2 . We observed that ~28% of the amplicon sequence variants were classified as novel according to their similarity with sequences from the reference database; most of them were related to heterotrophic groups traditionally overlooked in freshwater systems. This lack of knowledge extended to those groups within the green algae (Archaeplastida) that are well documented such as Mamiellophyceae, and also to the less studied Pedinophyceae, for which we found sequences representing novel deep-branching clusters. Among the groups with potential novel protists, Bicosoecida (Stramenopiles) were the best represented, followed by Codosiga (Opisthokonta), and the Perkinsea (Alveolata). This illustrates the lack of knowledge on freshwater planktonic protists and also the need for isolation and/or cultivation of new organisms to better understand their role in ecosystem functioning.


Assuntos
Alveolados , Estramenópilas , Alveolados/genética , Biodiversidade , Ecossistema , Eucariotos/genética , Água Doce , Filogenia , Estramenópilas/genética
5.
Mol Ecol ; 31(14): 3761-3783, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35593305

RESUMO

Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 µm) and ribosomal DNA metabarcoding (size fraction >3 µm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009-2016) at the SOMLIT-Astan station (Roscoff, Western English Channel). Based on morphology, diatoms were clearly the dominating group all year round and over the study period. Metabarcoding uncovered a wider diversity spectrum and revealed the prevalence of Dinophyceae and diatoms but also of Cryptophyta, Chlorophyta, Cercozoa, Syndiniales and Ciliophora in terms of read counts and or richness. The use of morphological and molecular analyses in combination allowed improving the taxonomic resolution and to identify the sequence of the dominant species and OTUs (18S V4 rDNA-derived taxa) that drive annual plankton successions. We detected that some of these dominant OTUs were benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. Our analysis of the temporal structure of community changes point to a strong seasonality and resilience. The temporal structure of environmental variables (especially Photosynthetic Active Radiation, temperature and macronutrients) and temporal structures generated by species life cycles and or species interactions, are key drivers of the observed cyclic annual plankton turnover.


Assuntos
Biodiversidade , Diatomáceas , Diatomáceas/genética , Eucariotos/genética , Filogenia , Plâncton/genética , RNA Ribossômico 18S/genética , Estações do Ano
6.
Nature ; 532(7600): 504-7, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27096373

RESUMO

Planktonic organisms play crucial roles in oceanic food webs and global biogeochemical cycles. Most of our knowledge about the ecological impact of large zooplankton stems from research on abundant and robust crustaceans, and in particular copepods. A number of the other organisms that comprise planktonic communities are fragile, and therefore hard to sample and quantify, meaning that their abundances and effects on oceanic ecosystems are poorly understood. Here, using data from a worldwide in situ imaging survey of plankton larger than 600 µm, we show that a substantial part of the biomass of this size fraction consists of giant protists belonging to the Rhizaria, a super-group of mostly fragile unicellular marine organisms that includes the taxa Phaeodaria and Radiolaria (for example, orders Collodaria and Acantharia). Globally, we estimate that rhizarians in the top 200 m of world oceans represent a standing stock of 0.089 Pg carbon, equivalent to 5.2% of the total oceanic biota carbon reservoir. In the vast oligotrophic intertropical open oceans, rhizarian biomass is estimated to be equivalent to that of all other mesozooplankton (plankton in the size range 0.2-20 mm). The photosymbiotic association of many rhizarians with microalgae may be an important factor in explaining their distribution. The previously overlooked importance of these giant protists across the widest ecosystem on the planet changes our understanding of marine planktonic ecosystems.


Assuntos
Biomassa , Biota , Oceanos e Mares , Rhizaria/isolamento & purificação , Zooplâncton/isolamento & purificação , Animais , Carbono/metabolismo , Sequestro de Carbono , Planeta Terra , Microalgas/metabolismo , Fotossíntese , Rhizaria/classificação , Rhizaria/metabolismo , Água do Mar/química , Simbiose , Zooplâncton/classificação , Zooplâncton/metabolismo
7.
Nature ; 532(7600): 465-470, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26863193

RESUMO

The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.


Assuntos
Organismos Aquáticos/metabolismo , Carbono/metabolismo , Ecossistema , Plâncton/metabolismo , Água do Mar/química , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Clorofila/metabolismo , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Dinoflagellida/metabolismo , Expedições , Genes Bacterianos , Genes Virais , Geografia , Oceanos e Mares , Fotossíntese , Plâncton/genética , Plâncton/isolamento & purificação , Água do Mar/microbiologia , Água do Mar/parasitologia , Synechococcus/genética , Synechococcus/isolamento & purificação , Synechococcus/metabolismo , Synechococcus/virologia
8.
J Phycol ; 57(2): 435-446, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33394518

RESUMO

In the Arctic Ocean, the small green alga Micromonas polaris dominates picophytoplankton during the summer months but is also present in winter. It has been previously hypothesized to be phago-mixotrophic (capable of bacteria ingestion) based on laboratory and field experiments. Prey uptake was analyzed in several M. polaris strains isolated from different regions and depths of the Arctic Ocean and in Ochromonas triangulata, a known phago-mixotroph used as a control. Measuring ingestion of either fluorescent beads or fluorescently labeled bacteria by flow cytometry, we found no evidence of phago-mixotrophy in any M. polaris strain while O. triangulata was ingesting both beads and bacteria. In addition, in silico predictions revealed that members of the genus Micromonas lack a genetic signature of phagocytotic capacity.


Assuntos
Clorófitas , Regiões Árticas , Bactérias , Estações do Ano
9.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768741

RESUMO

Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.


Assuntos
Transdução de Sinal Luminoso/fisiologia , Proteínas Luminescentes/metabolismo , Células Fotorreceptoras/fisiologia , Animais , Bactérias/metabolismo , Comunicação , Dinoflagellida/metabolismo , Luz , Luciferases/metabolismo , Medições Luminescentes , Células Fotorreceptoras/metabolismo , Plâncton/metabolismo , Comportamento Predatório
10.
Mol Ecol ; 27(10): 2365-2380, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29624751

RESUMO

Dinoflagellates are one of the most abundant and functionally diverse groups of eukaryotes. Despite an overall scarcity of genomic information for dinoflagellates, constantly emerging high-throughput sequencing resources can be used to characterize and compare these organisms. We assembled de novo and processed 46 dinoflagellate transcriptomes and used a sequence similarity network (SSN) to compare the underlying genomic basis of functional features within the group. This approach constitutes the most comprehensive picture to date of the genomic potential of dinoflagellates. A core-predicted proteome composed of 252 connected components (CCs) of putative conserved protein domains (pCDs) was identified. Of these, 206 were novel and 16 lacked any functional annotation in public databases. Integration of functional information in our network analyses allowed investigation of pCDs specifically associated with functional traits. With respect to toxicity, sequences homologous to those of proteins found in species with toxicity potential (e.g., sxtA4 and sxtG) were not specific to known toxin-producing species. Although not fully specific to symbiosis, the most represented functions associated with proteins involved in the symbiotic trait were related to membrane processes and ion transport. Overall, our SSN approach led to identification of 45,207 and 90,794 specific and constitutive pCDs of, respectively, the toxic and symbiotic species represented in our analyses. Of these, 56% and 57%, respectively (i.e., 25,393 and 52,193 pCDs), completely lacked annotation in public databases. This stresses the extent of our lack of knowledge, while emphasizing the potential of SSNs to identify candidate pCDs for further functional genomic characterization.


Assuntos
Dinoflagellida/genética , Transcriptoma , Conjuntos de Dados como Assunto , Dinoflagellida/fisiologia , Perfilação da Expressão Gênica , Genoma , Proteoma , Simbiose/genética
11.
Ecol Lett ; 20(2): 246-263, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28032461

RESUMO

There is increasing awareness that many terrestrial and aquatic organisms are not strictly heterotrophic or autotrophic but rather mixotrophic. Mixotrophy is an intermediate nutritional strategy, merging autotrophy and heterotrophy to acquire organic carbon and/or other elements, mainly N, P or Fe. We show that both terrestrial and aquatic mixotrophs fall into three categories, namely necrotrophic (where autotrophs prey on other organisms), biotrophic (where heterotrophs gain autotrophy by symbiosis) and absorbotrophic (where autotrophs take up environmental organic molecules). Here we discuss their physiological and ecological relevance since mixotrophy is found in virtually every ecosystem and occurs across the whole eukaryotic phylogeny, suggesting an evolutionary pressure towards mixotrophy. Ecosystem dynamics tend to separate light from non-carbon nutrients (N and P resources): the biological pump and water stratification in aquatic ecosystems deplete non-carbon nutrients from the photic zone, while terrestrial plant successions create a canopy layer with light but devoid of non-carbon soil nutrients. In both aquatic and terrestrial environments organisms face a grand écart (dancer's splits, i.e., the need to reconcile two opposing needs) between optimal conditions for photosynthesis vs. gain of non-carbon elements. We suggest that mixotrophy allows adaptation of organisms to such ubiquist environmental gradients, ultimately explaining why mixotrophic strategies are widespread.


Assuntos
Evolução Biológica , Metabolismo dos Carboidratos , Eucariotos/fisiologia , Processos Autotróficos , Processos Heterotróficos , Filogenia
12.
Mol Biol Evol ; 33(12): 3226-3248, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27729397

RESUMO

Biosilicification (the formation of biological structures from silica) occurs in diverse eukaryotic lineages, plays a major role in global biogeochemical cycles, and has significant biotechnological applications. Silicon (Si) uptake is crucial for biosilicification, yet the evolutionary history of the transporters involved remains poorly known. Recent evidence suggests that the SIT family of Si transporters, initially identified in diatoms, may be widely distributed, with an extended family of related transporters (SIT-Ls) present in some nonsilicified organisms. Here, we identify SITs and SIT-Ls in a range of eukaryotes, including major silicified lineages (radiolarians and chrysophytes) and also bacterial SIT-Ls. Our evidence suggests that the symmetrical 10-transmembrane-domain SIT structure has independently evolved multiple times via duplication and fusion of 5-transmembrane-domain SIT-Ls. We also identify a second gene family, similar to the active Si transporter Lsi2, that is broadly distributed amongst siliceous and nonsiliceous eukaryotes. Our analyses resolve a distinct group of Lsi2-like genes, including plant and diatom Si-responsive genes, and sequences unique to siliceous sponges and choanoflagellates. The SIT/SIT-L and Lsi2 transporter families likely contribute to biosilicification in diverse lineages, indicating an ancient role for Si transport in eukaryotes. We propose that these Si transporters may have arisen initially to prevent Si toxicity in the high Si Precambrian oceans, with subsequent biologically induced reductions in Si concentrations of Phanerozoic seas leading to widespread losses of SIT, SIT-L, and Lsi2-like genes in diverse lineages. Thus, the origin and diversification of two independent Si transporter families both drove and were driven by ancient ocean Si levels.


Assuntos
Eucariotos/metabolismo , Proteínas de Membrana Transportadoras/genética , Silício/metabolismo , Sequência de Aminoácidos , Evolução Biológica , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Coanoflagelados/metabolismo , Diatomáceas/metabolismo , Evolução Molecular , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
13.
Environ Microbiol ; 17(10): 4035-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26119494

RESUMO

Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date.


Assuntos
Alveolados/genética , Sedimentos Geológicos/microbiologia , Plâncton/classificação , Plâncton/genética , Água do Mar/microbiologia , Estramenópilas/genética , Sequência de Bases , Biodiversidade , Ecossistema , Europa (Continente) , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
14.
Nucleic Acids Res ; 41(Database issue): D597-604, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193267

RESUMO

The interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR(2), http://ssu-rrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of high-troughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total, 136 866 sequences are nuclear encoded, 45 708 (36 501 mitochondrial and 9657 chloroplastic) are from organelles, the remaining being putative chimeric sequences. The website allows the users to download sequences from the entire and partial databases (including representative sequences after clustering at a given level of similarity). Different web tools also allow searches by sequence similarity. The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists.


Assuntos
DNA Ribossômico/química , Bases de Dados de Ácidos Nucleicos , Genes de RNAr , RNA Ribossômico/química , Subunidades Ribossômicas Menores de Eucariotos/química , Código de Barras de DNA Taxonômico , Eucariotos/classificação , Eucariotos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Internet
15.
Proc Natl Acad Sci U S A ; 109(44): 18000-5, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071304

RESUMO

Symbiotic relationships are widespread in nature and are fundamental for ecosystem functioning and the evolution of biodiversity. In marine environments, photosymbiosis with microalgae is best known for sustaining benthic coral reef ecosystems. Despite the importance of oceanic microbiota in global ecology and biogeochemical cycles, symbioses are poorly characterized in open ocean plankton. Here, we describe a widespread symbiotic association between Acantharia biomineralizing microorganisms that are abundant grazers in plankton communities, and members of the haptophyte genus Phaeocystis that are cosmopolitan bloom-forming microalgae. Cophylogenetic analyses demonstrate that symbiont biogeography, rather than host taxonomy, is the main determinant of the association. Molecular dating places the origin of this photosymbiosis in the Jurassic (ca. 175 Mya), a period of accentuated marine oligotrophy. Measurements of intracellular dimethylated sulfur indicate that the host likely profits from antioxidant protection provided by the symbionts as an adaptation to life in transparent oligotrophic surface waters. In contrast to terrestrial and marine symbioses characterized to date, the symbiont reported in this association is extremely abundant and ecologically active in its free-living phase. In the vast and barren open ocean, partnership with photosymbionts that have extensive free-living populations is likely an advantageous strategy for hosts that rely on such interactions. Discovery of the Acantharia-Phaeocystis association contrasts with the widely held view that symbionts are specialized organisms that are rare and ecologically passive outside the host.


Assuntos
Plâncton/fisiologia , Simbiose , Biodiversidade , Dados de Sequência Molecular , Oceanos e Mares , Plâncton/classificação
16.
PLoS Biol ; 9(10): e1001177, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028628

RESUMO

The structure, robustness, and dynamics of ocean plankton ecosystems remain poorly understood due to sampling, analysis, and computational limitations. The Tara Oceans consortium organizes expeditions to help fill this gap at the global level.


Assuntos
Ecossistema , Expedições , Biologia Marinha , Plâncton/crescimento & desenvolvimento , Animais , Oceanos e Mares
17.
J Phycol ; 50(2): 388-99, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26988195

RESUMO

Symbiotic interactions between pelagic hosts and microalgae have received little attention, although they are widespread in the photic layer of the world ocean, where they play a fundamental role in the ecology of the planktonic ecosystem. Polycystine radiolarians (including the orders Spumellaria, Collodaria and Nassellaria) are planktonic heterotrophic protists that are widely distributed and often abundant in the ocean. Many polycystines host symbiotic microalgae within their cytoplasm, mostly thought to be the dinoflagellate Scrippsiella nutricula, a species originally described by Karl Brandt in the late nineteenth century as Zooxanthella nutricula. The free-living stage of this dinoflagellate has never been characterized in terms of morphology and thecal plate tabulation. We examined morphological characters and sequenced conservative ribosomal markers of clonal cultures of the free-living stage of symbiotic dinoflagellates isolated from radiolarian hosts from the three polycystine orders. In addition, we sequenced symbiont genes directly from several polycystine-symbiont holobiont specimens from different oceanic regions. Thecal plate arrangement of the free-living stage does not match that of Scrippsiella or related genera, and LSU and SSU rDNA-based molecular phylogenies place these symbionts in a distinct clade within the Peridiniales. Both phylogenetic analyses and the comparison of morphological features of culture strains with those reported for other closely related species support the erection of a new genus that we name Brandtodinium gen. nov. and the recombination of S. nutricula as B. nutricula comb. nov.

18.
Mol Phylogenet Evol ; 67(1): 53-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23280368

RESUMO

Rhizaria is one of the six supergroups of eukaryotes, which comprise the majority of amoeboid and skeleton-building protists living in freshwater and marine ecosystems. There is an overall lack of molecular data for the group and therefore the deep phylogeny of rhizarians is unresolved. Molecular data are particularly scarce for the clade of Retaria, which include two prominent groups of microfossils: foraminiferans and radiolarians. To fill this gap, we have produced and sequenced EST libraries for 14 rhizarian species including seven foraminiferans, Gromia and six taxa belonging to traditional Haeckel's Radiolaria: Acantharea, Polycystinea, and Phaeodarea. A matrix was constructed for phylogenetic analysis based on 109 genes and a total of 56 species, of which 22 are rhizarians. Our analyses provide the first multigene evidence for branching of Phaeodarea within Cercozoa, confirming the polyphyly of Haeckel's Radiolaria. It confirms the monophyly of Retaria, a clade grouping Foraminifera with other lineages of Radiolaria. However, contrary to what could be expected from morphological observations, Foraminifera do not form a sister group to radiolarians, but branch within them as sister to either Acantharea or Polycystinea depending on the multigene data set. While the monophyly of Foraminifera and Acantharea is well supported, that of Polycystinea, represented in our data by Spumellaria and Collodaria is questionable. In view of our study, Haeckel's Radiolaria appears as both, a polyphyletic and paraphyletic assemblage of independent groups that should be considered as separate lineages in protist classification.


Assuntos
Filogenia , Rhizaria/classificação , Teorema de Bayes , DNA de Protozoário/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Protozoários , Funções Verossimilhança , Modelos Genéticos , Rhizaria/genética , Alinhamento de Sequência , Análise de Sequência de DNA
19.
ISME Commun ; 3(1): 16, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854980

RESUMO

Marine protists are major components of the oceanic microbiome that remain largely unrepresented in culture collections and genomic reference databases. The exploration of this uncharted protist diversity in oceanic communities relies essentially on studying genetic markers from the environment as taxonomic barcodes. Here we report that across 6 large scale spatio-temporal planktonic surveys, half of the genetic barcodes remain taxonomically unassigned at the genus level, preventing a fine ecological understanding for numerous protist lineages. Among them, parasitic Syndiniales (Dinoflagellata) appear as the least described protist group. We have developed a computational workflow, integrating diverse 18S rDNA gene metabarcoding datasets, in order to infer large-scale ecological patterns at 100% similarity of the genetic marker, overcoming the limitation of taxonomic assignment. From a spatial perspective, we identified 2171 unassigned clusters, i.e., Syndiniales sequences with 100% similarity, exclusively shared between the Tropical/Subtropical Ocean and the Mediterranean Sea among all Syndiniales orders and 25 ubiquitous clusters shared within all the studied marine regions. From a temporal perspective, over 3 time-series, we highlighted 39 unassigned clusters that follow rhythmic patterns of recurrence and are the best indicators of parasite community's variation. These clusters withhold potential as ecosystem change indicators, mirroring their associated host community responses. Our results underline the importance of Syndiniales in structuring planktonic communities through space and time, raising questions regarding host-parasite association specificity and the trophic mode of persistent Syndiniales, while providing an innovative framework for prioritizing unassigned protist taxa for further description.

20.
Proc Natl Acad Sci U S A ; 106(31): 12803-8, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19622724

RESUMO

The current paradigm holds that cyanobacteria, which evolved oxygenic photosynthesis more than 2 billion years ago, are still the major light harvesters driving primary productivity in open oceans. Here we show that tiny unicellular eukaryotes belonging to the photosynthetic lineage of the Haptophyta are dramatically diverse and ecologically dominant in the planktonic photic realm. The use of Haptophyta-specific primers and PCR conditions adapted for GC-rich genomes circumvented biases inherent in classical genetic approaches to exploring environmental eukaryotic biodiversity and led to the discovery of hundreds of unique haptophyte taxa in 5 clone libraries from subpolar and subtropical oceanic waters. Phylogenetic analyses suggest that this diversity emerged in Paleozoic oceans, thrived and diversified in the permanently oxygenated Mesozoic Panthalassa, and currently comprises thousands of ribotypic species, belonging primarily to low-abundance and ancient lineages of the "rare biosphere." This extreme biodiversity coincides with the pervasive presence in the photic zone of the world ocean of 19'-hexanoyloxyfucoxanthin (19-Hex), an accessory photosynthetic pigment found exclusively in chloroplasts of haptophyte origin. Our new estimates of depth-integrated relative abundance of 19-Hex indicate that haptophytes dominate the chlorophyll a-normalized phytoplankton standing stock in modern oceans. Their ecologic and evolutionary success, arguably based on mixotrophy, may have significantly impacted the oceanic carbon pump. These results add to the growing evidence that the evolution of complex microbial eukaryotic cells is a critical force in the functioning of the biosphere.


Assuntos
Biodiversidade , Cianobactérias/metabolismo , Fotossíntese , Pigmentos Biológicos/análise , Evolução Biológica , Cianobactérias/classificação , Ecologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA