Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nucleic Acids Res ; 50(2): 674-683, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35018455

RESUMO

The design of efficient and safe gene delivery vehicles remains a major challenge for the application of gene therapy. Of the many reported gene delivery systems, metal complexes with high affinity for nucleic acids are emerging as an attractive option. We have discovered that certain metallohelices-optically pure, self-assembling triple-stranded arrays of fully encapsulated Fe-act as nonviral DNA delivery vectors capable of mediating efficient gene transfection. They induce formation of globular DNA particles which protect the DNA from degradation by various restriction endonucleases, are of suitable size and electrostatic potential for efficient membrane transport and are successfully processed by cells. The activity is highly structure-dependent-compact and shorter metallohelix enantiomers are far less efficient than less compact and longer enantiomers.


Assuntos
Cátions/química , DNA/química , Técnicas de Transferência de Genes , Vetores Genéticos , Nanopartículas Metálicas/química , Linhagem Celular , Sobrevivência Celular , DNA/ultraestrutura , Compostos Ferrosos/química , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/ultraestrutura , Humanos , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica/métodos , Estrutura Molecular , Transfecção
2.
Inorg Chem ; 62(16): 6474-6487, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37040203

RESUMO

We present the synthesis and characterization of six new heteroleptic osmium(II) complexes of the type [Os(C^N)(N^N)2]OTf (N^N = 2,2'-bipyridine and dipyrido[3,2-d:2',3'-f]quinoxaline; C^N = deprotonated methyl 1-butyl-2aryl-benzimidazolecarboxylate) with varying substituents in the R3 position of the phenyl ring of the cyclometalating C^N ligand. The new compounds are highly kinetically inert and absorb a full-wavelength range of visible light. An investigation of the antiproliferative activity of the new compounds has been performed using a panel of human cancer and noncancerous 2D cell monolayer cultures under dark conditions and green light irradiation. The results demonstrate that the new Os(II) complexes are markedly more potent than conventional cisplatin. The promising antiproliferative activity of selected Os(II) complexes was also confirmed using 3D multicellular tumor spheroids, which have the characteristics of solid tumors and can mimic the tumor tissue microenvironment. The mechanism of antiproliferative action of complexes has also been investigated and revealed that the investigated Os(II) complexes activate the endoplasmic reticulum stress pathway in cancer cells and disrupt calcium homeostasis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Relação Estrutura-Atividade , Osmio/farmacologia , Cálcio , Linhagem Celular Tumoral , Benzimidazóis/farmacologia , Homeostase , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia
3.
Angew Chem Int Ed Engl ; 62(42): e202310774, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37646232

RESUMO

A multitargeting prodrug (2) that releases gemcitabine, oxaliplatin, and doxorubicin in their active form in cancer cells is a potent cytotoxic agent with nM IC50s ; it is highly selective to cancer cells with mean selectivity indices to human (136) and murine (320) cancer cells. It effectively induces release of DAMPs (CALR, ATP & HMGB1) in CT26 cells facilitating more efficient phagocytosis by J774 macrophages than the FDA drugs or their co-administration. The viability of CT26 cells co-cultured with J774 macrophages and treated with 2 was reduced by 32 % compared to the non-treated cells, suggesting a synergistic antiproliferative effect between the chemical and immune reactions. 2 inhibited in vivo tumor growth in two murine models (LLC and CT26) better than the FDA drugs or their co-administration with significantly lower body weight loss. Mice inoculated with CT26 cells treated with 2 showed slightly better tumor free survival than doxorubicin.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Camundongos , Humanos , Animais , Oxaliplatina/farmacologia , Gencitabina , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral
4.
Chemistry ; 27(33): 8547-8556, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33835526

RESUMO

A cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII -COUPY (3), was recently shown as a very promising photosensitizer suitable for photodynamic therapy of cancer. Therefore, the primary goal of this work was to deepen knowledge on the mechanism of its photoactivated antitumor action so that this information could be used to propose a new class of compounds as drug candidates for curing very hardly treatable human tumors, such as androgen resistant prostatic tumors of metastatic origin. Conventional anticancer chemotherapies exhibit several disadvantages, such as limited efficiency to target cancer stem cells (CSCs), which are considered the main reason for chemotherapy resistance, relapse, and metastasis. Herein, we show, using DU145 tumor cells, taken as the model of hormone-refractory and aggressive prostate cancer cells resistant to conventional antineoplastic drugs, that the photoactivated conjugate 3 very efficiently eliminates both prostate bulk (differentiated) and prostate hardly treatable CSCs simultaneously and with a similar efficiency. Notably, the very low toxicity of IrIII -COUPY conjugate in the prostate DU145 cells in the dark and its pronounced selectivity for tumor cells compared with noncancerous cells could result in low side effects and reduced damage of healthy cells during the photoactivated therapy by this agent. Moreover, the experiments performed with the 3D spheroids formed from DU145 CSCs showed that conjugate 3 can penetrate the inner layers of tumor spheres, which might markedly increase its therapeutic effect. Also interestingly, this conjugate induces apoptotic cell death in prostate cancer DU145 cells associated with calcium signaling flux in these cells and autophagy. To the best of our knowledge, this is the first study demonstrating that a photoactivatable metal-based compound is an efficient agent capable of killing even hardly treatable CSCs.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cumarínicos/farmacologia , Humanos , Masculino , Células-Tronco Neoplásicas , Neoplasias da Próstata/tratamento farmacológico
5.
Inorg Chem ; 59(5): 3304-3311, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32064865

RESUMO

The water-compatible optically pure metallohelices made by self-assembly of simple nonpeptidic organic components around Fe(II) ions are now recognized as a distinct subclass of helicates that exhibit similar architecture to some natural cationic antimicrobial peptides. Notably, a new series of metallohelices was recently shown to exhibit biological activity, displaying high, structure-dependent activity against bacteria. It is also important that, thanks to their properties, such metallohelices can exhibit specific interactions with biomacromolecules. Here, following our prior report on the metallohelices that have high, structure-dependent activity against bacteria, we investigated the interactions of the series of iron(II) metallohelices with DNA, which is a potential pharmacological target of this class of coordination compounds. The results obtained with the aid of biophysical and molecular biology methods show that the investigated metallohelices accumulate in eukaryotic cells and that a significant fraction of the metallohelices accumulates in the cell nucleus, allowing them to interact also with nuclear DNA. Additionally, we have demonstrated that some metallohelices have a high affinity to DNA and are able to condense/aggregate DNA molecules more efficiently than conventional DNA-condensing agents, such as polyamines. Moreover, this capability of the metallohelices correlates with their efficiency to inhibit DNA-related enzymatic activities, such as those connected with DNA transcription, catalysis of DNA relaxation by DNA topoisomerase I, and cleavage by restriction enzymes.


Assuntos
Núcleo Celular/química , DNA Topoisomerases Tipo I/metabolismo , DNA/antagonistas & inibidores , Compostos Ferrosos/farmacologia , Inibidores da Topoisomerase I/farmacologia , Núcleo Celular/metabolismo , DNA/genética , DNA/metabolismo , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Células HCT116 , Humanos , Estrutura Molecular , Fenômenos Ópticos , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química
6.
Angew Chem Int Ed Engl ; 59(8): 3329-3335, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31802607

RESUMO

To design an anticancer drug capable of inhibiting not only the proliferation of the differentiated tumor cells but also reducing the tumorigenic capability of cancer stem cells (CSCs), the new PtIV prodrugs with axial cinnamate ligands were synthesized. We demonstrate their superior antiproliferative activity in monolayer and 3D spheroid antiproliferative activity tests using panel of cancer cell lines. An outstanding activity was found against rhabdomyosarcoma cells, one of the most problematic and poorly treatable pediatric tumors. The results also suggest that the released PtII compound inhibits antiproliferative activity of cancer cells by DNA-damage mediated mechanism; the released cinnamic acid can trigger processes leading to differentiation, making the CSCs more sensitive to killing by the platinum part of the complex. PtIV complex with axial cinnamate ligands is the first PtIV prodrug capable of overcoming CSCs resistance and induce death in both CSCs and bulk cancer.


Assuntos
Cinamatos/uso terapêutico , Células-Tronco Neoplásicas/metabolismo , Platina/uso terapêutico , Rabdomiossarcoma/tratamento farmacológico , Diferenciação Celular , Cinamatos/química , Humanos , Ligantes , Modelos Moleculares , Platina/química
7.
Angew Chem Int Ed Engl ; 59(34): 14677-14685, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32489012

RESUMO

Monosaccharides are added to the hydrophilic face of a self-assembled asymmetric FeII metallohelix, using CuAAC chemistry. The sixteen resulting architectures are water-stable and optically pure, and exhibit improved antiproliferative selectivity against colon cancer cells (HCT116 p53+/+ ) with respect to the non-cancerous ARPE-19 cell line. While the most selective compound is a glucose-appended enantiomer, its cellular entry is not mainly glucose transporter-mediated. Glucose conjugation nevertheless increases nuclear delivery ca 2.5-fold, and a non-destructive interaction with DNA is indicated. Addition of the glucose units affects the binding orientation of the metallohelix to naked DNA, but does not substantially alter the overall affinity. In a mouse model, the glucose conjugated compound was far better tolerated, and tumour growth delays for the parent compound (2.6 d) were improved to 4.3 d; performance as good as cisplatin but with the advantage of no weight loss in the subjects.


Assuntos
Glicoconjugados/química , Metais/química , Neoplasias/patologia , Células HCT116 , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
8.
Angew Chem Int Ed Engl ; 58(19): 6311-6315, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889300

RESUMO

Although cyclometalated IrIII complexes have emerged as promising photosensitizers for photodynamic therapy, some key drawbacks still hamper clinical translation, such as operability in the phototherapeutic window and reactive oxygen species (ROS) production efficiency and selectivity. In this work, a cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII -COUPY, is reported with highly favourable properties for cancer phototherapy. IrIII -COUPY was efficiently taken up by HeLa cells and showed no dark cytotoxicity and impressive photocytotoxicity indexes after irradiation with green and blue light, even under hypoxia. Importantly, a clear correlation between cell death and intracellular generation of superoxide anion radicals after visible light irradiation was demonstrated. This strategy opens the door to novel fluorescent photodynamic therapy agents with promising applications in theragnosis.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Cumarínicos/química , Irídio/química , Superóxidos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Células HeLa , Humanos , Luz , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia
9.
Chemistry ; 24(18): 4607-4619, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29369444

RESUMO

A series of five kinetically inert bis-cyclometalated IrIII complexes of general formula [Ir(C^N)2 (N^N)][PF6 ] [C^N=2-phenyl-1-[4-(trifluoromethyl)benzyl]-1H-benzo[d]imidazol-κN,C; N^N=1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3), benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn, 4), and dipyrido[3,2-a:2',3'-c]phenazine-10,11-imidazolone (dppz-izdo, 5)] were designed and synthesized to explore the effect of the degree of π conjugation of the polypyridyl ligand on their toxicity in cancer cells. We show that less-lipophilic complexes 1 and 2 exhibit the highest toxicity [sub-micromolar inhibitory concentration (IC50 ) values] in A2780, HeLa, and MCF-7 cancer cells, and they are markedly more efficient than clinically used platinum drugs. It is noteworthy that the investigated Ir agents display the capability to overcome acquired and inherent resistance to conventional cisplatin (in A2780cisR and MCF-7 cells, respectively). We demonstrate that the Ir complexes, unlike clinically used platinum antitumor drugs, do not kill cells through DNA-damage response. Rather, they kill cells by inhibiting protein translation by targeting preferentially the endoplasmic reticulum. Our findings also reveal that the toxic effect of the Ir complexes can be significantly potentiated by irradiation with visible light (by more than two orders of magnitude). The photopotentiation of the investigated Ir complexes can be attributed to a marked increase (≈10-30-fold) in intracellular reactive oxygen species. Collectively, these data highlight the functional diversity of antitumor metal-based drugs and the usefulness of a mechanism-based rationale for selecting candidate agents that are effective against chemoresistant tumors for further preclinical testing.


Assuntos
Antineoplásicos/farmacologia , Polímeros/farmacologia , Piridinas/farmacologia , Animais , Antineoplásicos/química , Ligantes , Polímeros/química , Piridinas/química
10.
Chemistry ; 23(61): 15294-15299, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28922506

RESUMO

Our study demonstrates that four novel kinetically inert C,N-cyclometalated RuII complexes of the type [Ru(C^N)(N^N)2 ][PF6 ] containing a handle for functionalization on the C^N ligand are very potent cytotoxic agents against several different human cancer cell lines and are up to 400-fold more potent than clinically used cisplatin. In addition, the investigated ruthenium complexes are less cytotoxic in noncancerous cells, and exhibit higher selectivity for cancer cells than conventional platinum anticancer drugs. The high potency of the investigated ruthenium compounds can be attributed to several factors, including enhanced internalization and their capability to change mitochondrial transmembrane potential in cells. The new ruthenium complexes also interfere with protein synthesis with a markedly higher potency than conventional inhibitors of DNA translation. Notably, the latter mechanism has not been hitherto described for other cytotoxic Ru compounds and cisplatin.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Rutênio/química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Carbono/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/toxicidade , Complexos de Coordenação/metabolismo , Complexos de Coordenação/toxicidade , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Nitrogênio/química , Espécies Reativas de Oxigênio/metabolismo
11.
Inorg Chem ; 56(3): 1483-1497, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28102676

RESUMO

One concept how to improve anticancer effects of conventional metallodrugs consists in conjugation of these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, biological effects, and mechanisms of action of new Pt(II) derivatives containing one or two nonsteroidal anti-inflammatory diclofenac (DCF) ligands also known for their antitumor effects. The antiproliferative properties of these metallic conjugates show that these compounds are potent and cancer cell selective cytotoxic agents exhibiting activity in cisplatin resistant and the COX-2 positive tumor cell lines. One of these compounds, compound 3, in which DCF molecules are coordinated to Pt(II) through their carboxylic group, is more potent than parental conventional Pt(II) drug cisplatin, free DCF and the congeners of 3 in which DCF ligands are conjugated to Pt(II) via a diamine. The potency of 3 is due to several factors including enhanced internalization that correlates with enhanced DNA binding and cytotoxicity. Mechanistic studies show that 3 combines multiple effects. After its accumulation in cells, it releases Pt(II) drug capable of binding/damaging DNA and DCF ligands, which affect distribution of cells in individual phases of the cell cycle, inhibit glycolysis and lactate transport, collapse mitochondrial membrane potential, and suppress the cellular properties characteristic of metastatic progression.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Diclofenaco/farmacologia , Compostos Organoplatínicos/farmacologia , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diclofenaco/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Relação Estrutura-Atividade
12.
Chemistry ; 22(8): 2728-35, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26789279

RESUMO

Anticancer therapy by platinum complexes, based on nanocarrier-based delivery, may offer a new approach to improve the efficacy and tolerability of the platinum family of anticancer drugs. The original rules for the design of new anticancer platinum drugs were affected by the fact that, although cisplatin (cis-[PtCl2 (NH3)2) was an anticancer drug, its isomer transplatin was not cytotoxic. For the first time, it is demonstrated that simple encapsulation of an inactive platinum compound in phospholipid bilayers transforms it into an efficient cytotoxic agent. Notably, the encapsulation of transplatin makes it possible to overcome the resistance mechanisms operating in cancer cells treated with cisplatin and prevents inactivation of transplatin in the extracellular environment. It is also shown that transplatin delivered to the cells in nanocapsules, in contrast to free (nonencapsulated) complex, forms cytotoxic cross-links on DNA.


Assuntos
Antineoplásicos/química , Cisplatino/química , DNA/química , Lipossomos/química , Nanocápsulas/química , Fosfolipídeos/química , Compostos de Platina/química , Platina/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Cisplatino/farmacologia , DNA/efeitos dos fármacos , DNA/metabolismo , Adutos de DNA , Humanos , Compostos de Platina/farmacologia
13.
Chemistry ; 22(28): 9750-9, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27246144

RESUMO

The fabrication of nanoparticles using different formulations, and which can be used for the delivery of chemotherapeutics, has recently attracted considerable attention. We describe herein an innovative approach that may ultimately allow for the selective delivery of anticancer drugs to tumor cells by using an external magnet. A conventional antitumor drug, cisplatin, has been incorporated into new carboxymethylcellulose-stabilized magnetite nanoparticles conjugated with the fluorescent marker Alexa Fluor 488 or folic acid as targeting agent. The magnetic nanocarriers possess exceptionally high biocompatibility and colloidal stability. These cisplatin-loaded nanoparticles overcome the resistance mechanisms typical of free cisplatin. Moreover, experiments aimed at the localization of the nanoparticles driven by an external magnet in a medium that mimics physiological conditions confirmed that this localization can inhibit tumor cell growth site-specifically.


Assuntos
Antineoplásicos/administração & dosagem , Carboximetilcelulose Sódica/química , Cisplatino/química , Cisplatino/farmacologia , Ácido Fólico/química , Nanopartículas de Magnetita/química , Platina/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Carboximetilcelulose Sódica/farmacocinética , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Sistemas de Liberação de Medicamentos , Humanos
14.
Chem Biol Interact ; 392: 110921, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382705

RESUMO

Cyclometalated Ir(III) complex [Ir(L)2(dppz)]PF6 (where L = 1-methyl-2-(thiophen-2-yl)-1H-benzo[d]imidazole and dppz = dipyrido [3,2-a:2',3'-c]phenazine) (Ir1) is potent anticancer agent whose potency can be significantly increased by irradiation with blue light. Structural features of the cyclometalated Ir(III) complex Ir1 investigated in this work, particularly the presence of dppz ligand possessing an extended planar area, suggest that this complex could interact with DNA. Here, we have shown that Ir1 accumulates predominantly in mitochondria of cancer cells where effectively and selectively binds mitochondrial (mt)DNA. Additionally, the results demonstrated that Ir1 effectively suppresses transcription of mitochondria-encoded genes, especially after irradiation, which may further affect mitochondrial (and thus also cellular) functions. The observation that Ir1 binds selectively to mtDNA implies that the mechanism of its biological activity in cancer cells may also be connected with its interaction and damage to mtDNA. Further investigations revealed that Ir1 tightly binds DNA in a cell-free environment, with sequence preference for GC over AT base pairs. Although the dppz ligand itself or as a ligand in structurally similar DNA-intercalating Ru polypyridine complexes based on dppz ligand intercalates into DNA, the DNA binding mode of Ir1 comprises surprisingly a groove binding rather than an intercalation. Also interestingly, after irradiation with visible (blue) light, Ir1 was capable of cleaving DNA, likely due to the production of superoxide anion radical. The results of this study show that mtDNA damage by Ir1 plays a significant role in its mechanism of antitumor efficacy. In addition, the results of this work are consistent with the hypothesis and support the view that targeting the mitochondrial genome is an effective strategy for anticancer (photo)therapy and that the class of photoactivatable dipyridophenazine Ir(III) compounds may represent prospective substances suitable for further testing.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , DNA Mitocondrial , Irídio/farmacologia , Irídio/química , Ligantes , Estudos Prospectivos , Mitocôndrias , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
15.
J Med Chem ; 67(11): 9745-9758, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38819023

RESUMO

Herein, we describe the general design, synthesis, characterization, and biological activity of new multitargeting Pt(IV) prodrugs that combine antitumor cisplatin and dasatinib, a potent inhibitor of Src kinase. These prodrugs exhibit impressive antiproliferative and anti-invasive activities in tumor cell lines in both two-dimensional (2D) monolayers of cell cultures and three-dimensional (3D) spheroids. We show that the cisplatin moiety and dasatinib in the investigated Pt(IV) complexes are both involved in the mechanism of action in MCF7 breast cancer cells and act synergistically. Thus, combining dasatinib and cisplatin into one molecule, compared to using individual components in a mix, may bring several advantages, such as significantly higher activity in cancer cell lines and higher selectivity for tumor cells. Most importantly, Pt(IV)-dasatinib complexes hold significant promise for potential anticancer therapies by targeting epithelial-mesenchymal transition, thus preventing the spread and metastasis of tumors, a value unachievable by a simple combination of both individual components.


Assuntos
Antineoplásicos , Cisplatino , Dasatinibe , Sinergismo Farmacológico , Pró-Fármacos , Dasatinibe/farmacologia , Dasatinibe/química , Dasatinibe/síntese química , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química
16.
J Med Chem ; 67(1): 691-708, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38141031

RESUMO

A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.


Assuntos
Antineoplásicos , Complexos de Coordenação , Dermatite Fototóxica , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Irídio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dermatite Fototóxica/tratamento farmacológico , Lisossomos , Benzotiazóis , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
17.
Biochim Biophys Acta ; 1820(10): 1502-11, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22683702

RESUMO

BACKGROUND: The design of anticancer metallodrugs is currently focused on platinum complexes which form on DNA major adducts that cannot readily be removed by DNA repair systems. Hence, antitumor azolato-bridged dinuclear Pt(II) complexes, such as [{cis-Pt(NH(3))(2)}(2)(µ-OH)(µ-pyrazolate)](2+) (AMPZ), have been designed and synthesized. These complexes exhibit markedly higher toxic effects in tumor cell lines than mononuclear conventional cisplatin. METHODS: Biophysical and biochemical aspects of the alterations induced in short DNA duplexes uniquely and site-specifically modified by the major DNA adduct of AMPZ, namely 1,2-GG intrastrand cross-links, were examined. Attention was also paid to conformational distortions induced in DNA by the adducts of AMPZ and cisplatin, associated alterations in the thermodynamic stability of the duplexes, and recognition of these adducts by high-mobility-group (HMG) domain proteins. RESULTS: Chemical probing of DNA conformation, DNA bending studies and translesion synthesis by DNA polymerase across the platinum adduct revealed that the distortion induced in DNA by the major adduct of AMPZ was significantly less pronounced than that induced by similar cross-links from cisplatin. Concomitantly, the cross-link from AMPZ reduced the thermodynamic stability of the modified duplex considerably less. In addition, HMGB1 protein recognizes major DNA adducts of AMPZ markedly less than those of cisplatin. GENERAL SIGNIFICANCE: The experimental evidence demonstrates why the major DNA adducts of the new anticancer azolato-bridged dinuclear Pt(II) complexes are poor substrates for DNA repair observed in a previously published report. The relative resistance to DNA repair explains why these platinum complexes show major pharmacological advantages over cisplatin in tumor cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , Metabolismo Energético/fisiologia , Platina/química , Animais , Antineoplásicos/farmacologia , Sequência de Bases , Varredura Diferencial de Calorimetria , Cisplatino/química , Cisplatino/metabolismo , Cisplatino/farmacologia , Humanos , Modelos Biológicos , Conformação Molecular , Sondas Moleculares/química , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Compostos Organoplatínicos/química , Compostos Organoplatínicos/metabolismo , Compostos Organoplatínicos/farmacologia , Platina/metabolismo , Polimerização/efeitos dos fármacos , Ratos
18.
J Med Chem ; 66(14): 9766-9783, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37410386

RESUMO

Herein, we report a series of new octahedral iridium(III) complexes Ir1-Ir9 of the type [Ir(N^N^N)(C^N)Cl]PF6 (N^N^N = 4'-(p-tolyl)-2,2':6',2″-terpyridine; C^N = deprotonated 2-arylbenzimidazole backbone) to introduce new metal-based compounds for effective inhibition of metastatic processes in triple-negative breast cancer (TNBC). The results show that the structural modifications within the C^N scaffold strongly impact the antimetastatic properties of these complexes in TNBC cells. Furthermore, testing the antimetastatic effects of the investigated Ir complexes revealed that the highest antimetastatic activity in TNBC cells is exhibited by complex Ir1. This result was in contrast to the effects of the clinically used drug doxorubicin used in conventional chemotherapy of TNBC, which conversely promoted metastatic properties of TNBC cells. Thus, the latter result suggests that doxorubicin chemotherapy may increase the risk of metastasis of breast cancer cells, so the search for new drugs to treat breast cancer that would show better antitumor effects than doxorubicin is justified.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ligantes , Antineoplásicos/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral
19.
Chem Biol Interact ; 385: 110742, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802407

RESUMO

The indole scaffold has been established as a key organic moiety for developing new drugs; on the other hand, a range of diiron bis-cyclopentadienyl complexes have recently emerged for their promising anticancer potential. Here, we report the synthesis of novel diiron complexes with an indole-functionalized vinyliminium ligand (2-5) and an indole-lacking analogue for comparative purposes (6), which were characterized by analytical and spectroscopic techniques. Complexes 2-6 are substantially stable in DMSO­d6 and DMEM-d solutions at 37 °C (8% average degradation after 48 h) and display a balanced hydrophilic/lipophilic behaviour (LogPow values in the range -0.32 to 0.47), associated with appreciable water solubility. The complexes display selective antiproliferative potency towards several cancer cells in monolayer cultures, mainly in the low micromolar range, with reduced toxicity towards noncancerous epithelial cells. Thus, the cytotoxicity of the complexes is comparable to or better than clinically used metallopharmaceutical cisplatin. Comparing the antiproliferative activity obtained for complexes containing different ligands, we confirmed the importance of the indolyl group in the mechanism of antiproliferative activity of these complexes. Cell-based mechanistic studies suggest that the investigated diiron vinyliminium complexes (DVCs) show cytostatic rather than cytotoxic effects and subsequently induce a population of cells to undergo apoptosis. Furthermore, the molecular mechanism of action involves interactions with mitochondrial DNA and proteins, the reactive oxygen species (ROS)-scavenging properties and antioxidant activity of these complexes in cancer cells. This study highlights the importance of DVCs to their cancer cell activity and reinforces their prospective therapeutic potential as anticancer agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antineoplásicos/química , Homeostase , Indóis/farmacologia , Complexos de Coordenação/química , Apoptose , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
20.
Chem Biol Interact ; 360: 109955, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447138

RESUMO

In this work, the mechanism underlying the anticancer activity of a photoactivatable Ir(III) compound of the type [Ir(C^N)2(dppz)][PF6] where C^N = 1-methyl-2-(2'-thienyl)benzimidazole (complex 1) was investigated. Complex 1 photoactivated by visible light shows potent activity against highly aggressive and poorly treatable Rhabdomyosarcoma (RD) cells, the most frequent soft tissue sarcomas of children. This remarkable activity of 1 was observed not only in RD cells cultured in 2D monolayers but, more importantly, also in 3D spheroids, which resemble in many aspects solid tumors and serve as a promising model to mimic the in vivo situation. Importantly, photoactivated 1 kills not only differentiated RD cells but also even more effectively cancer stem cells (CSCs) of RD. One of the factors responsible for the activity of irradiated 1 in RD CSCs is its ability to produce ROS in these cells more effectively than in differentiated RD cells. Moreover, photoactivated 1 caused in RD differentiated cells and CSCs a significant decrease of mitochondrial membrane potential and promotes opening mitochondrial permeability transition pores in these cells, a mechanism that has never been demonstrated for any other metal-based anticancer complex. The results of this work give evidence that 1 has a potential for further evaluation using in vivo models as a promising chemotherapeutic agent for photodynamic therapy of hardly treatable human Rhabdomyosarcoma, particularly for its activity in both stem and differentiated cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rabdomiossarcoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Criança , Complexos de Coordenação/farmacologia , Humanos , Irídio/farmacologia , Mitocôndrias , Células-Tronco Neoplásicas , Rabdomiossarcoma/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA