Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(3): 473-486, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32781046

RESUMO

Africa contains more human genetic variation than any other continent, but the majority of the population-scale analyses of the African peoples have focused on just two of the four major linguistic groups, the Niger-Congo and Afro-Asiatic, leaving the Nilo-Saharan and Khoisan populations under-represented. In order to assess genetic variation and signatures of selection within a Nilo-Saharan population and between the Nilo-Saharan and Niger-Congo and Afro-Asiatic, we sequenced 50 genomes from the Nilo-Saharan Lugbara population of North-West Uganda and 250 genomes from 6 previously unsequenced Niger-Congo populations. We compared these data to data from a further 16 Eurasian and African populations including the Gumuz, another putative Nilo-Saharan population from Ethiopia. Of the 21 million variants identified in the Nilo-Saharan population, 3.57 million (17%) were not represented in dbSNP and included predicted non-synonymous mutations with possible phenotypic effects. We found greater genetic differentiation between the Nilo-Saharan Lugbara and Gumuz populations than between any two Afro-Asiatic or Niger-Congo populations. F3 tests showed that Gumuz contributed a genetic component to most Niger-Congo B populations whereas Lugabara did not. We scanned the genomes of the Lugbara for evidence of selective sweeps. We found selective sweeps at four loci (SLC24A5, SNX13, TYRP1, and UVRAG) associated with skin pigmentation, three of which already have been reported to be under selection. These selective sweeps point toward adaptations to the intense UV radiation of the Sahel.


Assuntos
Adaptação Fisiológica/genética , Variação Genética/genética , Seleção Genética/genética , Pigmentação da Pele/genética , Antiporters/genética , População Negra/genética , Gerenciamento de Dados , Etiópia/epidemiologia , Feminino , Genética Populacional , Genoma Humano/genética , Haplótipos/genética , Humanos , Masculino , Glicoproteínas de Membrana/genética , Oxirredutases/genética , Polimorfismo de Nucleotídeo Único/genética , Nexinas de Classificação/genética , Proteínas Supressoras de Tumor/genética , Uganda/epidemiologia
2.
Genome Res ; 28(9): 1383-1394, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30006414

RESUMO

African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number, and chromosomal position. Thus, analyzing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analyzing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSGs segregate into defined "phylotypes" that do not recombine. In our data set comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the "variant antigen profile." We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines the T. congolense VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host-parasite interaction at population and individual scales.


Assuntos
Polimorfismo Genético , Análise de Sequência de DNA/métodos , Trypanosoma congolense/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Motivos de Aminoácidos , Animais , Masculino , Trypanosoma congolense/imunologia , Trypanosoma congolense/patogenicidade , Moscas Tsé-Tsé/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia
3.
BMC Genomics ; 21(1): 289, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32272904

RESUMO

BACKGROUND: Copy number variation is an important class of genomic variation that has been reported in 75% of the human genome. However, it is underreported in African populations. Copy number variants (CNVs) could have important impacts on disease susceptibility and environmental adaptation. To describe CNVs and their possible impacts in Africans, we sequenced genomes of 232 individuals from three major African ethno-linguistic groups: (1) Niger Congo A from Guinea and Côte d'Ivoire, (2) Niger Congo B from Uganda and the Democratic Republic of Congo and (3) Nilo-Saharans from Uganda. We used GenomeSTRiP and cn.MOPS to identify copy number variant regions (CNVRs). RESULTS: We detected 7608 CNVRs, of which 2172 were only deletions, 2384 were only insertions and 3052 had both. We detected 224 previously un-described CNVRs. The majority of novel CNVRs were present at low frequency and were not shared between populations. We tested for evidence of selection associated with CNVs and also for population structure. Signatures of selection identified previously, using SNPs from the same populations, were overrepresented in CNVRs. When CNVs were tagged with SNP haplotypes to identify SNPs that could predict the presence of CNVs, we identified haplotypes tagging 3096 CNVRs, 372 CNVRs had SNPs with evidence of selection (iHS > 3) and 222 CNVRs had both. This was more than expected (p < 0.0001) and included loci where CNVs have previously been associated with HIV, Rhesus D and preeclampsia. When integrated with 1000 Genomes CNV data, we replicated their observation of population stratification by continent but no clustering by populations within Africa, despite inclusion of Nilo-Saharans and Niger-Congo populations within our dataset. CONCLUSIONS: Novel CNVRs in the current study increase representation of African diversity in the database of genomic variants. Over-representation of CNVRs in SNP signatures of selection and an excess of SNPs that both tag CNVs and are subject to selection show that CNVs may be the actual targets of selection at some loci. However, unlike SNPs, CNVs alone do not resolve African ethno-linguistic groups. Tag haplotypes for CNVs identified may be useful in predicting African CNVs in future studies where only SNP data is available.


Assuntos
População Negra/genética , Variações do Número de Cópias de DNA , Genômica/métodos , África/etnologia , Bases de Dados Genéticas , Predisposição Genética para Doença , Genética Populacional , Genoma Humano , Haplótipos , Humanos
4.
BMC Bioinformatics ; 18(Suppl 7): 260, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28617232

RESUMO

BACKGROUND: Transcription factor (TF) networks play a key role in controlling the transfer of genetic information from gene to mRNA. Much progress has been made on understanding and reverse-engineering TF network topologies using a range of experimental and theoretical methodologies. Less work has focused on using these models to examine how TF networks respond to changes in the cellular environment. METHODS: In this paper, we have developed a simple, pragmatic methodology, TIGERi (Transcription-factor-activity Illustrator for Global Explanation of Regulatory interaction), to model the response of an inferred TF network to changes in cellular environment. The methodology was tested using publicly available data comparing gene expression profiles of a mouse p38α (Mapk14) knock-out line to the original wild-type. RESULTS: Using the model, we have examined changes in the TF network resulting from the presence or absence of p38α. A part of this network was confirmed by experimental work in the original paper. Additional relationships were identified by our analysis, for example between p38α and HNF3, and between p38α and SOX9, and these are strongly supported by published evidence. FXR and MYC were also discovered in our analysis as two novel links of p38α. To provide a computational methodology to the biomedical communities that has more user-friendly interface, we also developed a standalone GUI (graphical user interface) software for TIGERi and it is freely available at https://github.com/namshik/tigeri/ . CONCLUSIONS: We therefore believe that our computational approach can identify new members of networks and new interactions between members that are supported by published data but have not been integrated into the existing network models. Moreover, ones who want to analyze their own data with TIGERi could use the software without any command line experience. This work could therefore accelerate researches in transcriptional gene regulation in higher eukaryotes.


Assuntos
Aprendizado de Máquina , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Redes Reguladoras de Genes , Camundongos , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Proteína Quinase 14 Ativada por Mitógeno/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcriptoma
5.
BMC Genomics ; 16: 642, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26311067

RESUMO

BACKGROUND: Almost all genome sequencing projects neglect the fact that diploid organisms contain two genome copies and consequently what is published is a composite of the two. This means that the relationship between alternate alleles at two or more linked loci is lost. We have developed a simplified method of directly obtaining the haploid sequences of each genome copy from an individual organism. RESULTS: The diploid sequences of three groups of cattle samples were obtained using a simple sample preparation procedure requiring only a microscope and a haemocytometer. Samples were: 1) lymphocytes from a single Angus steer; 2) sperm cells from an Angus bull; 3) lymphocytes from East African Zebu (EAZ) cattle collected and processed in a field laboratory in Eastern Kenya. Haploid sequence from a fosmid library prepared from lymphocytes of an EAZ cow was used for comparison. Cells were serially diluted to a concentration of one cell per microlitre by counting with a haemocytometer at each dilution. One microlitre samples, each potentially containing a single cell, were lysed and divided into six aliquots (except for the sperm samples which were not divided into aliquots). Each aliquot was amplified with phi29 polymerase and sequenced. Contigs were obtained by mapping to the bovine UMD3.1 reference genome assembly and scaffolds were assembled by joining adjacent contigs that were within a threshold distance of each other. Scaffolds that appeared to contain artefacts of CNV or repeats were filtered out leaving scaffolds with an N50 length of 27-133 kb and a 88-98 % genome coverage. SNP haplotypes were assembled with the Single Individual Haplotyper program to generate an N50 size of 97-201 kb but only ~27-68 % genome coverage. This method can be used in any laboratory with no special equipment at only slightly higher costs than conventional diploid genome sequencing. A substantial body of software for analysis and workflow management was written and is available as supplementary data. CONCLUSIONS: We have developed a set of laboratory protocols and software tools that will enable any laboratory to obtain haplotype sequences at only modestly greater cost than traditional mixed diploid sequences.


Assuntos
Diploide , Genoma , Genômica , Haplótipos , Análise de Sequência de DNA , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Análise de Célula Única , Software
6.
Parasitology ; 142(4): 566-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25377239

RESUMO

Resistance to infections with Heligmosomoides bakeri is associated with a significant quantitative trait locus (QTL-Hbnr1) on mouse chromosome 1 (MMU1). We exploited recombinant mice, with a segment of MMU1 from susceptible C57Bl/10 mice introgressed onto MMU1 in intermediate responder NOD mice (strains 1094 and 6109). BALB/c (intermediate responder) and C57Bl/6 mice (poor responder) were included as control strains and strain 1098 (B10 alleles on MMU3) as NOD controls. BALB/c mice resisted infection rapidly and C57Bl/6 accumulated heavy worm burdens. Fecal egg counts dropped by weeks 10-11 in strain 1098, but strains 1094 and 6109 continued to produce eggs, harbouring more worms when autopsied (day 77). PubMed search identified 3 genes (Ctla4, Cd28, Icos) as associated with 'Heligmosomoides' in the B10 insert. Single nucleotide polymorphism (SNP) differences in Ctla4 could be responsible for regulatory changes in gene function, and a SNP within a splice site in Cd28 could have an impact on function, but no polymorphisms with predicted effects on function were found in Icos. Therefore, one or more genes encoded in the B10 insert into NOD mice contribute to the response phenotype, narrowing down the search for genes underlying the H. bakeri resistance QTL, and suggest Cd28 and Ctla4 as candidate genes.


Assuntos
Resistência à Doença/genética , Heligmosomatoidea/imunologia , Camundongos Endogâmicos/genética , Infecções por Strongylida/imunologia , Animais , Antígenos CD28/genética , Antígeno CTLA-4/genética , Haplótipos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos NOD , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Infecções por Strongylida/genética
7.
Proc Natl Acad Sci U S A ; 108(22): 9304-9, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21593421

RESUMO

African bovine trypanosomiasis caused by Trypanosoma sp., is a major constraint on cattle productivity in sub-Saharan Africa. Some African Bos taurus breeds are highly tolerant of infection, but the potentially more productive Bos indicus zebu breeds are much more susceptible. Zebu cattle are well adapted for plowing and haulage, and increasing their tolerance of trypanosomiasis could have a major impact on crop cultivation as well as dairy and beef production. We used three strategies to obtain short lists of candidate genes within QTL that were previously shown to regulate response to infection. We analyzed the transcriptomes of trypanotolerant N'Dama and susceptible Boran cattle after infection with Trypanosoma congolense. We sequenced EST libraries from these two breeds to identify polymorphisms that might underlie previously identified quantitative trait loci (QTL), and we assessed QTL regions and candidate loci for evidence of selective sweeps. The scan of the EST sequences identified a previously undescribed polymorphism in ARHGAP15 in the Bta2 trypanotolerance QTL. The polymorphism affects gene function in vitro and could contribute to the observed differences in expression of the MAPK pathway in vivo. The expression data showed that TLR and MAPK pathways responded to infection, and the former contained TICAM1, which is within a QTL on Bta7. Genetic analyses showed that selective sweeps had occurred at TICAM1 and ARHGAP15 loci in African taurine cattle, making them strong candidates for the genes underlying the QTL. Candidate QTL genes were identified in other QTL by their expression profile and the pathways in which they participate.


Assuntos
Regulação da Expressão Gênica , Trypanosoma congolense/metabolismo , Tripanossomíase Bovina/genética , Tripanossomíase Bovina/parasitologia , Alelos , Animais , Bovinos , Clonagem Molecular , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Genótipo , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Polimorfismo Genético , Locos de Características Quantitativas , Distribuição Tecidual
8.
PLoS Negl Trop Dis ; 18(5): e0011516, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701067

RESUMO

BACKGROUND: Sleeping sickness caused by Trypanosoma brucei rhodesiense is a fatal disease and endemic in Southern and Eastern Africa. There is an urgent need to develop novel diagnostic and control tools to achieve elimination of rhodesiense sleeping sickness which might be achieved through a better understanding of trypanosome gene expression and genetics using endemic isolates. Here, we describe transcriptome profiles and population structure of endemic T. b. rhodesiense isolates in human blood in Malawi. METHODOLOGY: Blood samples of r-HAT cases from Nkhotakota and Rumphi foci were collected in PaxGene tubes for RNA extraction before initiation of r-HAT treatment. 100 million reads were obtained per sample, reads were initially mapped to the human genome reference GRCh38 using HiSat2 and then the unmapped reads were mapped against Trypanosoma brucei reference transcriptome (TriTrypDB54_TbruceiTREU927) using HiSat2. Differential gene expression analysis was done using the DeSeq2 package in R. SNP calling from reads that were mapped to the T. brucei genome was done using GATK in order to identify T.b. rhodesiense population structure. RESULTS: 24 samples were collected from r-HAT cases of which 8 were from Rumphi and 16 from Nkhotakota foci. The isolates from Nkhotakota were enriched with transcripts for cell cycle arrest and stumpy form markers, whereas isolates in Rumphi focus were enriched with transcripts for folate biosynthesis and antigenic variation pathways. These parasite focus-specific transcriptome profiles are consistent with the more virulent disease observed in Rumphi and a less symptomatic disease in Nkhotakota associated with the non-dividing stumpy form. Interestingly, the Malawi T.b. rhodesiense isolates expressed genes enriched for reduced cell proliferation compared to the Uganda T.b. rhodesiense isolates. PCA analysis using SNPs called from the RNAseq data showed that T. b. rhodesiense parasites from Nkhotakota are genetically distinct from those collected in Rumphi. CONCLUSION: Our results suggest that the differences in disease presentation in the two foci is mainly driven by genetic differences in the parasites in the two major endemic foci of Rumphi and Nkhotakota rather than differences in the environment or host response.


Assuntos
Transcriptoma , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Malaui , Humanos , Trypanosoma brucei rhodesiense/genética , Tripanossomíase Africana/parasitologia , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Masculino
9.
Parasit Vectors ; 17(1): 179, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581062

RESUMO

ABSTRACT: BACKGROUND: Intestinal schistosomiasis remains a worrying health problem, particularly in western Côte d'Ivoire, despite control efforts. It is therefore necessary to understand all the factors involved in the development of the disease, including biotic and abiotic factors. The aim of this study was to examine the factors that could support the maintenance of the intermediate host and its vectorial capacity in western Côte d'Ivoire. METHODS: Data on river physicochemical, microbiological, and climatic parameters, the presence or absence of snails with Schistosoma mansoni, and human infections were collected between January 2020 and February 2021. Spearman rank correlation tests, Mann-Whitney, analysis of variance (ANOVA), and an appropriate model selection procedure were used to analyze the data. RESULTS: The overall prevalence of infected snails was 56.05%, with infection reaching 100% in some collection sites and localities. Of 26 sites examined, 25 contained thermophilic coliforms and 22 contained Escherichia coli. Biomphalaria pfeifferi was observed in environments with lower land surface temperature (LST) and higher relative air humidity (RAH), and B. pfeifferi infection predominated in more acidic environments. Thermal coliforms and E. coli preferred higher pH levels. Lower maximum LST (LST_Max) and higher RAH and minimum LST (LST_Min) were favorable to E. coli, and lower LST_Max favored coliforms. The presence of B. pfeifferi was positively influenced by water temperature (T °C), LST_Min, RAH, and precipitation (Pp) (P < 0.05) and negatively influenced by pH, total dissolved solids (TDS), electrical conductivity (EC), LST_Max, and mean land surface temperature (LST). The parameters pH, TDS, EC, LST_Min, LST, and Pp had a positive impact on snail infection, while LST_Max had a negative impact on infection. Only pH had a positive effect on coliform and E. coli abundance. Of the 701 people examined for human schistosomiasis, 73.13% were positive for the point-of-care circulating cathodic antigen (POC-CCA) test and 12.01% for the Kato-Katz (KK) test. A positive correlation was established between human infections and the abundance of Biomphalaria (r2 = 0.879, P = 0.04959). CONCLUSIONS: The results obtained reflect the environmental conditions that are conducive to the maintenance of S. mansoni infection in this part of the country. To combat this infection as effectively as possible, it will be necessary not only to redouble efforts but also to prioritize control according to the level of endemicity at the village level.


Assuntos
Biomphalaria , Esquistossomose mansoni , Animais , Humanos , Schistosoma mansoni , Côte d'Ivoire/epidemiologia , Escherichia coli , Esquistossomose mansoni/epidemiologia
10.
EBioMedicine ; 101: 105000, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360481

RESUMO

BACKGROUND: APOL1 variants G1 and G2 are common in populations with recent African ancestry. They are associated with protection from African sleeping sickness, however homozygosity or compound heterozygosity for these variants is associated with chronic kidney disease (CKD) and related conditions. What is not clear is the extent of associations with non-kidney-related disorders, and whether there are clusters of diseases associated with individual APOL1 genotypes. METHODS: Using a cohort of 7462 UK Biobank participants with recent African ancestry, we conducted a phenome-wide association study investigating associations between individual APOL1 genotypes and conditions identified by the International Classification of Disease phenotypes. FINDINGS: We identified 27 potential associations between individual APOL1 genotypes and a diverse range of conditions. G1/G2 compound heterozygotes were specifically associated with 26 of these conditions (all deleteriously), with an over-representation of infectious diseases (including hospitalisation and death resulting from COVID-19). The analysis also exposed complexities in the relationship between APOL1 and CKD that are not evident when risk variants are grouped together: G1 homozygosity, G2 homozygosity, and G1/G2 compound heterozygosity were each shown to be associated with distinct CKD phenotypes. The multi-locus nature of the G1/G2 genotype means that its associations would go undetected in a standard genome-wide association study. INTERPRETATION: Our findings have implications for understanding health risks and better-targeted detection, intervention, and therapeutic strategies, particularly in populations where APOL1 G1 and G2 are common such as in sub-Saharan Africa and its diaspora. FUNDING: This study was funded by the Wellcome Trust (209511/Z/17/Z) and H3Africa (H3A/18/004).


Assuntos
Apolipoproteína L1 , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Insuficiência Renal Crônica/genética , Apolipoproteínas/genética , Fatores de Risco
11.
PLoS Negl Trop Dis ; 17(12): e0011803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055777

RESUMO

T. b. rhodesiense is the causative agent of Rhodesian human African trypanosomiasis (r-HAT) in Malawi. Clinical presentation of r-HAT in Malawi varies between foci and differs from East African HAT clinical phenotypes. The purpose of this study was to gain more insights into the transcriptomic profiles of patients with early stage 1 and late stage 2 HAT disease in Malawi. Whole blood from individuals infected with T. b. rhodesiense was used for RNA-Seq. Control samples were from healthy trypanosome negative individuals matched on sex, age range, and disease foci. Illumina sequence FASTQ reads were aligned to the GRCh38 release 84 human genome sequence using HiSat2 and differential analysis was done in R Studio using the DESeq2 package. XGR, ExpressAnalyst and InnateDB algorithms were used for functional annotation and gene enrichment analysis of significant differentially expressed genes. RNA-seq was done on 23 r-HAT case samples and 28 healthy controls with 7 controls excluded for downstream analysis as outliers. A total of 4519 genes were significant differentially expressed (p adjusted <0.05) in individuals with early stage 1 r-HAT disease (n = 12) and 1824 genes in individuals with late stage 2 r-HAT disease (n = 11) compared to controls. Enrichment of innate immune response genes through neutrophil activation was identified in individuals with both early and late stages of the disease. Additionally, lipid metabolism genes were enriched in late stage 2 disease. We further identified uniquely upregulated genes (log2 Fold Change 1.4-2.0) in stage 1 (ZNF354C) and stage 2 (TCN1 and MAGI3) blood. Our data add to the current understanding of the human transcriptome profiles during T. b. rhodesiense infection. We further identified biological pathways and transcripts enriched than were enriched during stage 1 and stage 2 r-HAT. Lastly, we have identified transcripts which should be explored in future research whether they have potential of being used in combination with other markers for staging or r-HAT.


Assuntos
Transcriptoma , Tripanossomíase Africana , Animais , Humanos , Trypanosoma brucei rhodesiense , Malaui , Fenótipo , Proteínas Repressoras
12.
PLoS Negl Trop Dis ; 17(11): e0011455, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37967122

RESUMO

Over 290 million people are infected by schistosomes worldwide. Schistosomiasis control efforts focus on mass drug treatment with praziquantel (PZQ), a drug that kills the adult worm of all Schistosoma species. Nonetheless, re-infections have continued to be detected in endemic areas with individuals living in the same area presenting with varying infection intensities. Our objective was to characterize the transcriptome profiles in peripheral blood of children between 10-15 years with varying intensities of Schistosoma mansoni infection living along the Albert Nile in Uganda. RNA extracted from peripheral blood collected from 44 S. mansoni infected (34 high and 10 low by circulating anodic antigen [CAA] level) and 20 uninfected children was sequenced using Illumina NovaSeq S4 and the reads aligned to the GRCh38 human genome. Differential gene expression analysis was done using DESeq2. Principal component analysis revealed clustering of gene expression by gender when S. mansoni infected children were compared with uninfected children. In addition, we identified 14 DEGs between S. mansoni infected and uninfected individuals, 56 DEGs between children with high infection intensity and uninfected individuals, 33 DEGs between those with high infection intensity and low infection intensity and no DEGs between those with low infection and uninfected individuals. We also observed upregulation and downregulation of some DEGs that are associated with fibrosis and its regulation. These data suggest expression of fibrosis associated genes as well as genes that regulate fibrosis in S. mansoni infection. The relatively few significant DEGS observed in children with schistosomiasis suggests that chronic S. mansoni infection is a stealth infection that does not stimulate a strong immune response.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Esquistossomose , Adulto , Animais , Humanos , Criança , Schistosoma mansoni/genética , Anti-Helmínticos/uso terapêutico , Uganda/epidemiologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose/tratamento farmacológico , Perfilação da Expressão Gênica
13.
PLoS Negl Trop Dis ; 17(11): e0011796, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033168

RESUMO

BACKGROUND: Individuals genetically susceptible to high schistosomiasis worm burden may contribute disproportionately to transmission and could be prioritized for control. Identifying genes involved may guide development of therapy. METHODOLOGY/PRINCIPAL FINDINGS: A cohort of 606 children aged 10-15 years were recruited in the Albert Nile region of Uganda and assessed for Schistosoma mansoni worm burden using the Up-Converting Particle Lateral Flow (UCP-LF) test detecting circulating anodic antigen (CAA), point-of-care Circulating Cathodic Antigen (POC-CCA) and Kato-Katz tests. Whole genome genotyping was conducted on 326 children comprising the top and bottom 25% of worm burden. Linear models were fitted to identify variants associated with worm burden in preselected candidate genes. Expression quantitative trait locus (eQTL) analysis was conducted for candidate genes with UCP-LF worm burden included as a covariate. Single Nucleotide Polymorphism loci associated with UCP-LF CAA included IL6 rs2066992 (OR = 0.43, p = 0.0006) and rs7793163 (OR = 2.0, p = 0.0007); IL21 SNP kgp513476 (OR 1.79, p = 0.0025) and IL17B SNP kgp708159 (OR = 0.35, p = 0.0028). A haplotype in the IL10 locus was associated with lower worm burden (OR = 0.53, p = 0.015) and overlapped SNPs rs1800896, rs1800871 and rs1800872. Significant haplotypes (p<0.05, overlapping significant SNP) associated with worm burden were observed in IL6 and the Th17 pathway IL12B and IL17B genes. There were significant eQTL in the IL6, IL5, IL21, IL25 and IFNG regions. CONCLUSIONS: Variants associated with S. mansoni worm burden were in IL6, FCN2, RNASE3, IL10, IL12B and IL17B gene loci. However only eQTL associations remained significant after Bonferroni correction. In summary, immune balance, pathogen recognition and Th17 pathways may play a role in modulating Schistosoma worm burden. Individuals carrying risk variants may be targeted first in allocation of control efforts to reduce the burden of schistosomiasis in the community.


Assuntos
Esquistossomose mansoni , Esquistossomose , Adolescente , Animais , Criança , Humanos , Antígenos de Helmintos , Proteína Catiônica de Eosinófilo , Fezes/química , Interleucina-10 , Subunidade p40 da Interleucina-12 , Interleucina-6/genética , Schistosoma mansoni/genética , Esquistossomose/diagnóstico , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/diagnóstico , Sensibilidade e Especificidade , Uganda/epidemiologia
14.
Infect Genet Evol ; 111: 105416, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889485

RESUMO

Eliminating schistosomiasis as a public health problem by 2030 requires a better understanding of the disease transmission, especially the asymmetric distribution of worm burden in individuals living and sharing the same environment. It is in this light that this study was designed to identify human genetic determinants associated with high burden of S. mansoni and also with the plasma concentrations of IgE and four cytokines in children from two schistosomiasis endemic areas of Cameroon. In school-aged children of schistosomiasis endemic areas of Makenene and Nom-Kandi of Cameroon, S. mansoni infections and their infection intensities were evaluated in urine and stool samples using respectively the Point-of-care Circulating Cathodic Antigen test (POC-CCA) and the Kato Katz (KK) test. Thereafter, blood samples were collected in children harbouring high burden of schistosome infections as well as in their parents and siblings. DNA extracts and plasma were obtained from blood. Polymorphisms at 14 loci of five genes were assessed using PCR-restriction fragment length polymorphism and amplification-refractory mutation system. The ELISA test enabled to determine the plasma concentrations of IgE, IL-13, IL-10, IL-4 and IFN-γ. The prevalence of S. mansoni infections was significantly higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in Makenene (48.6% for POC-CCA and 7.9% for KK) compared to Nom-Kandi (31% for POC-CCA and 4.3% for KK). The infection intensities were also higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in children from Makenene than those from Nom-Kandi. The allele C of SNP rs3024974 of STAT6 was associated with an increased risk of bearing high burden of S. mansoni both in the additive (p = 0.009) and recessive model (p = 0.01) while the allele C of SNP rs1800871 of IL10 was protective (p = 0.0009) against high burden of S. mansoni. The alleles A of SNP rs2069739 of IL13 and G of SNP rs2243283 of IL4 were associated with an increased risk of having low plasma concentrations of IL-13 (P = 0.04) and IL-10 (P = 0.04), respectively. This study showed that host genetic polymorphisms may influence the outcome (high or low worm burden) of S. mansoni infections and also the plasma concentrations of some cytokines.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Criança , Schistosoma mansoni/genética , Interleucina-13/genética , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/genética , Interleucina-10/genética , Interleucina-4/genética , Citocinas/genética , Camarões/epidemiologia , Antígenos de Helmintos/genética , Sensibilidade e Especificidade , Polimorfismo Genético , Prevalência , Imunoglobulina E , Fezes
15.
Emerg Infect Dis ; 18(2): 287-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22305185

RESUMO

We describe a case of multiorgan dysfunction secondary to Trypanosoma brucei rhodesiense infection acquired on safari in Zambia. This case was one of several recently reported to ProMED-mail in persons who had traveled to this region. Trypanosomiasis remains rare in travelers but should be considered in febrile patients who have returned from trypanosomiasis-endemic areas of Africa.


Assuntos
Insuficiência de Múltiplos Órgãos/diagnóstico , Viagem , Trypanosoma brucei rhodesiense , Tripanossomíase Africana/diagnóstico , Feminino , Humanos , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/parasitologia , Suramina/uso terapêutico , Resultado do Tratamento , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia
16.
Int J Epidemiol ; 51(5): 1361-1370, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771662

RESUMO

BACKGROUND: Nigeria is Africa's most populated country. By November 2021 it had experienced three waves of SARS-CoV-2 infection. Peer-reviewed seroprevalence data assessing the proportion of the Nigerian population that have been infected were extremely limited. METHODS: We conducted a serosurvey in one urban site (n = 400) and one rural site (n = 402) in Kaduna State, Nigeria between 11 October 2021 and 8 November 2021. Z-tests were used to compare seroprevalence across age groups, locations and sexes. T tests were used to determine whether age or household size are associated with seropositivity. Associations between seropositivity and recent history of common Covid-19 symptoms were tested using logistic regression. RESULTS: SARS-CoV-2 antibodies were detected in 42.5% an 53.5% of participants at the urban and rural sites, respectively The overall age- and sex- stratified seroprevalence was 43.7% (42.2% for unvaccinated individuals). The data indicate an infection rate in Kaduna State ≥359-fold the rate derived from polymerase chain reaction-confirmed cases. In the urban site, seroprevalence among females and participants aged <20 was lower than other groups. Reporting loss of sense of taste and/or smell was strongly associated with seropositive status. Associations with seropositivity were also found for the reporting of dry cough, fever, headache, nausea and sore throat. CONCLUSIONS: This study provides baseline SARS-CoV-2 seroprevalence in Kaduna State, Nigeria, immediately prior to the spread of the Omicron variant. It indicates that in October/November 2021, approximately 56% of the population did not have detectable antibodies, and population subgroups with particularly low seroprevalence remain. It highlights limitations in using PCR-confirmed cases to estimate infection rates. The data will inform public health strategies in Nigeria and other sub-Saharan African countries with limited SARS-CoV-2 seroprevalence data.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/epidemiologia , Feminino , Humanos , Nigéria/epidemiologia , Estudos Soroepidemiológicos
17.
PLoS Negl Trop Dis ; 16(7): e0010570, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35895705

RESUMO

BACKGROUND: Knowing the prevalence of schistosomiasis is key to informing programmes to control and eliminate the disease as a public health problem. It is also important to understand the impact of infection on child growth and development in order to allocate appropriate resources and effort to the control of the disease. METHODS: We conducted a survey to estimate the prevalence of schistosomiasis among school aged children in villages along the Albert-Nile shore line in the district of Pakwach, North Western Uganda. A total of 914 children aged between 10-15 years were screened for Schistosoma mansoni using the POC-CCA and Kato Katz (KK) techniques. The infection intensities were assessed by POC-CCA and KK as well as CAA tests. The KK intensities were also correlated with POC-CCA and with CAA intensity. Anthropometric measurements were also taken and multivariate analysis was carried out to investigate their association with infection status. RESULTS: The prevalence of schistosomiasis using the POC-CCA diagnostic test was estimated at 85% (95% CI: 83-87), being highest amongst children living closer to the Albert-Nile shoreline. Visual scoring of the POC-CCA results was more sensitive than the Kato Katz test and was positively correlated with the quantified infection intensities by the CAA test. The majority of the children were underweight (BMI<18.5), and most notably, boys had significantly lower height for age (stunting) than girls in the same age range (p < 0.0001), but this was not directly associated with S. mansoni infection. CONCLUSION: High prevalence of S. mansoni infection in the region calls for more frequent mass drug administration with praziquantel. We observed high levels of stunting which was not associated with schistosomiasis. There is a need for improved nutrition among the children in the area.


Assuntos
Esquistossomose mansoni , Adolescente , Animais , Antígenos de Helmintos/análise , Criança , Estudos Transversais , Fezes/química , Feminino , Transtornos do Crescimento/epidemiologia , Humanos , Masculino , Prevalência , Schistosoma mansoni , Esquistossomose mansoni/diagnóstico , Esquistossomose mansoni/epidemiologia , Sensibilidade e Especificidade , Uganda/epidemiologia
18.
Front Immunol ; 12: 613468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659002

RESUMO

Schistosomiasis remains the fourth most prevalent parasitic disease affecting over 200 million people worldwide. Control efforts have focussed on the disruption of the life cycle targeting the parasite, vector and human host. Parasite burdens are highly skewed, and the majority of eggs are shed into the environment by a minority of the infected population. Most morbidity results from hepatic fibrosis leading to portal hypertension and is not well-correlated with worm burden. Genetics as well as environmental factors may play a role in these skewed distributions and understanding the genetic risk factors for intensity of infection and morbidity may help improve control measures. In this review, we focus on how genetic factors may influence parasite load, hepatic fibrosis and portal hypertension. We found 28 studies on the genetics of human infection and 20 studies on the genetics of pathology in humans. S. mansoni and S. haematobium infection intensity have been showed to be controlled by a major quantitative trait locus SM1, on chromosome 5q31-q33 containing several genes involved in the Th2 immune response, and three other loci of smaller effect on chromosomes 1, 6, and 7. The most common pathology associated with schistosomiasis is hepatic and portal vein fibroses and the SM2 quantitative trait locus on chromosome six has been linked to intensity of fibrosis. Although there has been an emphasis on Th2 cytokines in candidate gene studies, we found that four of the five QTL regions contain Th17 pathway genes that have been included in schistosomiasis studies: IL17B and IL12B in SM1, IL17A and IL17F in 6p21-q2, IL6R in 1p21-q23 and IL22RA2 in SM2. The Th17 pathway is known to be involved in response to schistosome infection and hepatic fibrosis but variants in this pathway have not been tested for any effect on the regulation of these phenotypes. These should be priorities for future studies.


Assuntos
Variação Genética , Genoma Helmíntico , Hepatopatias/etiologia , Schistosoma/genética , Esquistossomose/parasitologia , Alelos , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Gerenciamento Clínico , Genes de Helmintos , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipertensão Portal/diagnóstico , Hipertensão Portal/etiologia , Hepatopatias/diagnóstico , Anotação de Sequência Molecular , Carga Parasitária , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Schistosoma/imunologia , Esquistossomose/complicações , Esquistossomose/diagnóstico , Índice de Gravidade de Doença
19.
PLoS Negl Trop Dis ; 15(7): e0009569, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260610

RESUMO

BACKGROUND: Determining Schistosoma mansoni infection rate and intensity is challenging due to the low sensitivity of the Kato-Katz (KK) test that underestimates the true disease prevalence. Circulating cathodic antigen (CCA) excreted in urine is constantly produced by adult worms and has been used as the basis of a simple, non-invasive point of care test (POC-CCA) for Schistosoma mansoni infections. Although the abundance of CCA in urine is proportional to worm burden, the POC-CCA test is marketed as a qualitative test, making it difficult to investigate the wide range of infection intensities. This study was designed to compare the prevalence and intensity of S. mansoni by KK and POC-CCA and quantify, on fresh and frozen (<-20°C) urine samples, CCA using the visual scores and the ESEquant LR3 reader. METHODOLOGY: Stool and urine samples were collected from 759 school-aged children. The prevalence and intensity of S. mansoni were determined using KK and POC-CCA. The degree of the positivity of POC-CCA was estimated by quantifying CCA on fresh and frozen urine samples using visual scores and strip reader. The prevalence, the infection intensity as well the relative amounts of CCA were compared. RESULTS: The S. mansoni infection rates inferred from POC-CCA and KK were 40.7% and 9.4% respectively. Good correlations were observed between infection intensities recorded by; i) the reader and visual scoring system on fresh (Rho = 0.89) and frozen samples (Rho = 0.97), ii) the reader on fresh urine samples and KK (epg) (Rho = 0.44). Nevertheless, 238 POC-CCA positive children were negative for KK, and sixteen of them had high levels of CCA. The correlation between results from the reader on fresh and frozen samples was good (Rho = 0.85). On frozen samples, CCA was not detected in 55 samples that were positive in fresh urine samples. CONCLUSION: This study confirmed the low sensitivity of KK and the high capacity of POC-CCA to provide reliable data on the prevalence and intensity of S. mansoni infections. The lateral flow reader enabled accurate quantification of CCA under field conditions on fresh and frozen urine samples with less time and effort than KK.


Assuntos
Antígenos de Helmintos/urina , Sistemas Automatizados de Assistência Junto ao Leito , Fitas Reagentes , Schistosoma mansoni/química , Esquistossomose mansoni/diagnóstico , Esquistossomose mansoni/urina , Animais , Camarões/epidemiologia , Criança , Humanos , Testes Imediatos , Prevalência
20.
AAS Open Res ; 4: 36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35252746

RESUMO

Background: Approximately 25% of the risk of Schistosoma mansoni is associated with host genetic variation. We will test 24 candidate genes, mainly in the T h2 and T h17 pathways, for association with S. mansoni infection intensity in four African countries, using family based and case-control approaches. Methods: Children aged 5-15 years will be recruited in S. mansoni endemic areas of Ivory Coast, Cameroon, Uganda and the Democratic Republic of Congo (DRC). We will use family based (study 1) and case-control (study 2) designs. Study 1 will take place in Ivory Coast, Cameroon, Uganda and the DRC. We aim to recruit 100 high worm burden families from each country except Uganda, where a previous study recruited at least 40 families. For phenotyping, cases will be defined as the 20% of children in each community with heaviest worm burdens as measured by the circulating cathodic antigen (CCA) assay. Study 2 will take place in Uganda. We will recruit 500 children in a highly endemic community. For phenotyping, cases will be defined as the 20% of children with heaviest worm burdens as measured by the CAA assay, while controls will be the 20% of infected children with the lightest worm burdens. Deoxyribonucleic acid (DNA) will be genotyped on the Illumina H3Africa SNP (single nucleotide polymorphisms) chip and genotypes will be converted to sets of haplotypes that span the gene region for analysis. We have selected 24 genes for genotyping that are mainly in the Th2 and Th17 pathways and that have variants that have been demonstrated to be or could be associated with Schistosoma infection intensity.   Analysis: In the family-based design, we will identify SNP haplotypes disproportionately transmitted to children with high worm burden. Case-control analysis will detect overrepresentation of haplotypes in extreme phenotypes with correction for relatedness by using whole genome principal components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA