Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Reprod ; 38(3): 359-370, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708005

RESUMO

STUDY QUESTION: What is the impact of cancer or hematological disorders on germ cells in pediatric male patients? SUMMARY ANSWER: Spermatogonial quantity is reduced in testes of prepubertal boys diagnosed with cancer or severe hematological disorder compared to healthy controls and this reduction is disease and age dependent: patients with central nervous system cancer (CNS tumors) and hematological disorders, as well as boys <7 years are the most affected. WHAT IS KNOWN ALREADY: Fertility preservation in pediatric male patients is considered based on the gonadotoxicity of selected treatments. Although treatment effects on germ cells have been extensively investigated, limited data are available on the effect of the disease on the prepubertal male gonad. Of the few studies investigating the effects of cancer or hematologic disorders on testicular function and germ cell quantity in prepuberty, the results are inconsistent. However, recent studies suggested impairments before the initiation of known gonadotoxic therapy. Understanding which diseases and at what age affect the germ cell pool in pediatric patients before treatment is critical to optimize strategies and counseling for fertility preservation. STUDY DESIGN, SIZE, DURATION: This multicenter retrospective cohort study included 101 boys aged <14 years with extra-cerebral cancer (solid tumors), CNS tumors, leukemia/lymphoma (blood cancer), or non-malignant hematological disorders, who were admitted for a fertility preservation programme between 2002 and 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: In addition to clinical data, we analyzed measurements of testicular volume and performed histological staining on testicular biopsies obtained before treatment, at cryopreservation, to evaluate number of spermatogonia per tubular cross-section, tubular fertility index, and the most advanced germ cell type prior to chemo-/radiotherapy. The controls were data simulations with summary statistics from original studies reporting healthy prepubertal boys' testes characteristics. MAIN RESULTS AND THE ROLE OF CHANCE: Prepubertal patients with childhood cancer or hematological disorders were more likely to have significantly reduced spermatogonial quantity compared to healthy controls (48.5% versus 31.0% prevalence, respectively). The prevalence of patients with reduced spermatogonial quantity was highest in the CNS tumor (56.7%) and the hematological disorder (55.6%) groups, including patients with hydroxyurea pre-treated sickle cell disease (58.3%) and patients not exposed to hydroxyurea (50%). Disease also adversely impacted spermatogonial distribution and differentiation. Irrespective of disease, we observed the highest spermatogonial quantity reduction in patients <7 years of age. LIMITATIONS, REASONS FOR CAUTION: For ethical reasons, we could not collect spermatogonial quantity data in healthy prepubertal boys as controls and thus deployed statistical simulation on data from literature. Also, our results should be interpreted considering low patient numbers per (sub)group. WIDER IMPLICATIONS OF THE FINDINGS: Cancers, especially CNS tumors, and severe hematological disorders can affect spermatogonial quantity in prepubertal boys before treatment. Consequently, these patients may have a higher risk of depleted spermatogonia following therapies, resulting in persistent infertility. Therefore, patient counseling prior to disease treatment and timing of fertility preservation should not only be based on treatment regimes, but also on diagnoses and age. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Marie Curie Initial Training Network (ITN) (EU-FP7-PEOPLE-2013-ITN) funded by European Commision grant no. 603568; ZonMW Translational Adult stem cell research (TAS) grant no. 116003002. No competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Preservação da Fertilidade , Doenças Hematológicas , Neoplasias , Adulto , Criança , Humanos , Masculino , Espermatogônias , Preservação da Fertilidade/métodos , Estudos Retrospectivos , Hidroxiureia , Testículo , Criopreservação
2.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887314

RESUMO

Organotypic culture of human fetal testis has achieved fertilization-competent spermatids followed by blastocysts development. This study focuses on whether the organotypic culture of testicular tissue from infant boys with cryptorchidism could support the development of spermatogonia and somatic cells. Frozen-thawed tissues were cultured in two different media, with or without retinoic acid (RA), for 60 days and evaluated by tissue morphology and immunostaining using germ and somatic cell markers. During the 60-day culture, spermatocytes stained by boule-like RNA-binding protein (BOLL) were induced in biopsies cultured with RA. Increased AR expression (p < 0.001) and decreased AMH expression (p < 0.001) in Sertoli cells indicated advancement of Sertoli cell maturity. An increased number of SOX9-positive Sertoli cells (p < 0.05) was observed, while the percentage of tubules with spermatogonia was reduced (p < 0.001). More tubules with alpha-smooth muscle actin (ACTA, peritubular myoid cells (PTMCs) marker) were observed in an RA-absent medium (p = 0.02). CYP17A1/STAR-positive Leydig cells demonstrated sustained steroidogenic function. Our culture conditions support the initiation of spermatocytes and enhanced maturation of Sertoli cells and PTMCs within infant testicular tissues. This study may be a basis for future studies focusing on maintaining and increasing the number of spermatogonia and identifying different factors and hormones, further advancing in vitro spermatogenesis.


Assuntos
Criptorquidismo , Criptorquidismo/metabolismo , Humanos , Lactente , Masculino , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Testículo/metabolismo
3.
Reprod Biomed Online ; 39(1): 119-133, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31005581

RESUMO

RESEARCH QUESTION: Does recombinant human vascular endothelial growth factor (VEGF-165) improve the efficiency of human immature testis tissue (ITT) xenotransplantation? DESIGN: ITT fragments from three prepubertal boys were cultured for 5 days with VEGF-165 or without (control) before xenotransplantation into the testes of immunodeficient mice. Xenotransplants were recovered at 4 and 9 months post-transplantation and vascularization, seminiferous tubule integrity, number of spermatogonia and germ cell differentiation were evaluated by histology and immunohistochemistry. RESULTS: Transplants from donor 1 and donor 2 treated with VEGF demonstrated higher vascular surface (P = 0.004) and vessel density (P = 0.011) overall and contained more intact seminiferous tubules (P = 0.039) with time, compared with controls. The number of spermatogonia was increased over time (P < 0.001) irrespective of treatment and donor, whereas, for the VEGF-treated transplants, the increase was even higher over time (P = 0.020). At 9 months, spermatocytes were present in the xenotransplants, irrespective of treatment. No transplants could be recovered from donor 3, who had already received treatment with cyclosporine for aplastic anaemia before biopsy. CONCLUSIONS: In-vitro pre-treatment of human prepubertal testis tissue with VEGF improved transplant vascularization in two out of three cases, resulting in improved seminiferous tubule integrity and spermatogonial survival during xenotransplantation. Although further studies are warranted, we suggest VEGF to be considered as a factor for improving the efficiency of immature testis tissue transplantation in the future.


Assuntos
Testículo/efeitos dos fármacos , Testículo/transplante , Transplante Heterólogo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fatores Etários , Animais , Biópsia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Criopreservação , Preservação da Fertilidade/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Puberdade/fisiologia , Proteínas Recombinantes/farmacologia , Espermatogênese/efeitos dos fármacos , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/fisiologia , Testículo/citologia , Testículo/patologia
4.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640294

RESUMO

While the incidence of cancer in children and adolescents has significantly increased over the last decades, improvements made in the field of cancer therapy have led to an increased life expectancy for childhood cancer survivors. However, the gonadotoxic effect of the treatments may lead to infertility. Although semen cryopreservation represents the most efficient and safe fertility preservation method for males producing sperm, it is not feasible for prepubertal boys. The development of an effective strategy based on the pharmacological protection of the germ cells and testicular function during gonadotoxic exposure is a non-invasive preventive approach that prepubertal boys could benefit from. However, the progress in this field is slow. Currently, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells is offered to prepubertal boys as an experimental fertility preservation strategy by a number of medical centers. Several in vitro and in vivo fertility restoration approaches based on the use of ITT have been developed so far with autotransplantation of ITT appearing more promising. In this review, we discuss the pharmacological approaches for fertility protection in prepubertal and adolescent boys and the fertility restoration approaches developed on the utilization of ITT.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Neoplasias/complicações , Testículo/transplante , Adolescente , Células-Tronco Germinativas Adultas/química , Criança , Pré-Escolar , Criopreservação , Preservação da Fertilidade , Humanos , Lactente , Masculino , MicroRNAs/genética , Neoplasias/terapia , Preservação de Tecido
5.
Cancers (Basel) ; 16(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38539511

RESUMO

In recent years, immune checkpoint inhibitors (ICIs) have become a viable option for many cancer patients, including specific subgroups of pediatric patients. Despite their efficiency in treating different types of cancer, ICIs are responsible for a number of immune-related adverse events, including inflammatory toxicities, that can affect several organs. However, our knowledge of the impact of ICIs on the testis and male fertility is limited. It is possible that ICI treatment affects testicular function and spermatogenesis either directly or indirectly (or both). Treatment with ICIs may cause increased inflammation and immune cell infiltration within the seminiferous tubules of the testis, disturbing spermatogenesis or testosterone deficiency (primary hypogonadism). Additionally, the interference of ICIs with the hypothalamic-pituitary-gonadal axis may alter testosterone production, affecting testicular function (secondary hypogonadism) and spermatogenesis. This review provides an overview of the available evidence on the potential association between ICIs and the disruption of spermatogenesis, with special focus on ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). Moreover, it highlights the need for further investigations and encourages the discussion of associated risks and fertility-preservation considerations between clinicians and patients.

6.
Front Endocrinol (Lausanne) ; 13: 825904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721721

RESUMO

Background: Infertile men with non-obstructive azoospermia (NOA) have impaired spermatogenesis. Dilated and un-dilated atrophic seminiferous tubules are often present in the testes of these patients, with the highest likelihood of active spermatogenesis in the dilated tubules. Little is known about the un-dilated tubules, which in NOA patients constitute the majority. To advance therapeutic strategies for men with NOA who fail surgical sperm retrieval we aimed to characterize the spermatogonial stem cell microenvironment in atrophic un-dilated tubules. Methods: Testis biopsies approximately 3x3x3 mm3 were obtained from un-dilated areas from 34 patients. They were classified as hypospermatogenesis (HS) (n=5), maturation arrest (MA) (n=14), and Sertoli cell only (SCO) (n= 15). Testis samples from five fertile men were included as controls. Biopsies were used for histological analysis, RT-PCR analysis and immunofluorescence of germ and Sertoli cell markers. Results: Anti-Müllerian hormone mRNA and protein expression was increased in un-dilated tubules in all three NOA subtypes, compared to the control, showing an immature state of Sertoli cells (p<0.05). The GDNF mRNA expression was significantly increased in MA (P=0.0003). The BMP4 mRNA expression showed a significant increase in HS, MA, and SCO (P=0.02, P=0.0005, P=0.02, respectively). The thickness of the tubule wall was increased 2.2-fold in the SCO-NOA compared to the control (p<0.05). In germ cells, we found the DEAD-box helicase 4 (DDX4) and melanoma-associated antigen A4 (MAGE-A4) mRNA and protein expression reduced in NOA (MAGE-A: 46% decrease in HS, 53% decrease in MA, absent in SCO). In HS-NOA, the number of androgen receptor positive Sertoli cells was reduced 30% with a similar pattern in mRNA expression. The γH2AX expression was increased in SCO as compared to HS and MA. However, none of these differences reached statistical significance probably due to low number of samples. Conclusions: Sertoli cells were shown to be immature in un-dilated tubules of three NOA subtypes. The increased DNA damage in Sertoli cells and thicker tubule wall in SCO suggested a different mechanism for the absence of spermatogenesis from SCO to HS and MA. These results expand insight into the differences in un-dilated tubules from the different types of NOA patients.


Assuntos
Azoospermia , Oligospermia , Azoospermia/genética , Azoospermia/patologia , Azoospermia/terapia , Humanos , Masculino , Oligospermia/genética , Oligospermia/metabolismo , RNA Mensageiro/metabolismo , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/patologia , Espermatogônias/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 853482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360067

RESUMO

Background: Cryopreservation of prepubertal testicular tissue preserves spermatogonial stem cells (SSCs) that may be used to restore fertility in men at risk of infertility due to gonadotoxic treatments for either a malignant or non-malignant disease. Spermatogonial stem cell-based transplantation is a promising fertility restoration technique. Previously, we performed xenotransplantation of propagated SSCs from prepubertal testis and found human SSCs colonies within the recipient testes six weeks post-transplantation. In order to avoid the propagation step of SSCs in vitro that may cause genetic and epigenetic changes, we performed direct injection of single cell suspension in this study, which potentially may be safer and easier to be applied in future clinical applications. Methods: Testis biopsies were obtained from 11 infant boys (median age 1.3 years, range 0.5-3.5) with cryptorchidism. Following enzymatic digestion, dissociated single-cell suspensions were prelabeled with green fluorescent dye and directly transplanted into seminiferous tubules of busulfan-treated mice. Six to nine weeks post-transplantation, the presence of gonocytes and SSCs was determined by whole-mount immunofluorescence for a number of germ cell markers (MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28), somatic cell markers (SOX9, CYP17A1). Results: Following xenotransplantation human infant germ cells, consisting of gonocytes and SSCs, were shown to settle on the basal membrane of the recipient seminiferous tubules and form SSC colonies with expression of MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28. The colonization efficiency was approximately 6%. No human Sertoli cells were detected in the recipient mouse testes. Conclusion: Xenotransplantation, without in vitro propagation, of testicular cell suspensions from infant boys with cryptorchidism resulted in colonization of mouse seminiferous tubules six to nine weeks post-transplantation. Spermatogonial stem cell-based transplantation could be a therapeutic treatment for infertility of prepubertal boys with cryptorchidism and boys diagnosed with cancer. However, more studies are required to investigate whether the low number of the transplanted SSC is sufficient to secure the presence of sperm in the ejaculate of those patients over time.


Assuntos
Espermatogônias , Testículo , Animais , Criopreservação , Humanos , Masculino , Camundongos , Espermatogônias/metabolismo , Espermatozoides , Testículo/metabolismo , Transplante Heterólogo
8.
Stem Cell Res Ther ; 10(1): 310, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640769

RESUMO

BACKGROUND: Spermatogonial stem cell transplantation (SSCT) is a promising therapy in restoring the fertility of childhood cancer survivors. However, the low efficiency of SSCT is a significant concern. SSCT could be improved by co-transplanting transforming growth factor beta 1 (TGFß1)-induced mesenchymal stem cells (MSCs). In this study, we investigated the reproductive efficiency and safety of co-transplanting spermatogonial stem cells (SSCs) and TGFß1-induced MSCs. METHODS: A mouse model for long-term infertility was used to transplant SSCs (SSCT, n = 10) and a combination of SSCs and TGFß1-treated MSCs (MSi-SSCT, n = 10). Both transplanted groups and a fertile control group (n = 7) were allowed to mate naturally to check the reproductive efficiency after transplantation. Furthermore, the testes from transplanted males and donor-derived male offspring were analyzed for the epigenetic markers DNA methyltransferase 3A (DNMT3A) and histone 4 lysine 5 acetylation (H4K5ac). RESULTS: The overall tubular fertility index (TFI) after SSCT (76 ± 12) was similar to that after MSi-SSCT (73 ± 14). However, the donor-derived TFI after MSi-SSCT (26 ± 14) was higher compared to the one after SSCT (9 ± 5; P = 0.002), even after injecting half of the number of SSCs in MSi-SSCT. The litter sizes after SSCT (3.7 ± 3.7) and MSi-SSCT (3.7 ± 3.6) were similar but differed significantly with the control group (7.6 ± 1.0; P < 0.001). The number of GFP+ offspring per litter obtained after SSCT (1.6 ± 0.5) and MSi-SSCT (2.0 ± 1.0) was also similar. The expression of DNMT3A and H4K5ac in germ cells of transplanted males was found to be significantly reduced compared to the control group. However, in donor-derived offspring, DNMT3A and H4K5ac followed the normal pattern. CONCLUSION: Co-transplanting SSCs and TGFß1-treated MSCs results in reproductive efficiency as good as SSCT, even after transplanting half the number of SSCs. Although transplanted males showed lower expression of DNMT3A and H4K5ac in donor-derived germ cells, the expression was restored to normal levels in germ cells of donor-derived offspring. This procedure could become an efficient method to restore fertility in a clinical setup, but more studies are needed to ensure safety in the long term.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Reprodução/fisiologia , Espermatogônias/citologia , Espermatogônias/transplante , Acetilação , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Epigênese Genética , Histonas/metabolismo , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL
9.
Stem Cell Res Ther ; 9(1): 317, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463610

RESUMO

BACKGROUND: Spermatogonial stem cell transplantation (SSCT) could become a fertility restoration tool for childhood cancer survivors. However, since in mice, the colonization efficiency of transplanted spermatogonial stem cells (SSCs) is only 12%, the efficiency of the procedure needs to be improved before clinical implementation is possible. Co-transplantation of mesenchymal stem cells (MSCs) might increase colonization efficiency of SSCs by restoring the SSC niche after gonadotoxic treatment. METHODS: A mouse model for long-term infertility was developed and used to transplant SSCs (SSCT, n = 10), MSCs (MSCT, n = 10), a combination of SSCs and MSCs (MS-SSCT, n = 10), or a combination of SSCs and TGFß1-treated MSCs (MSi-SSCT, n = 10). RESULTS: The best model for transplantation was obtained after intraperitoneal injection of busulfan (40 mg/kg body weight) at 4 weeks followed by CdCl2 (2 mg/kg body weight) at 8 weeks of age and transplantation at 11 weeks of age. Three months after transplantation, spermatogenesis resumed with a significantly better tubular fertility index (TFI) in all transplanted groups compared to non-transplanted controls (P < 0.001). TFI after MSi-SSCT (83.3 ± 19.5%) was significantly higher compared to MS-SSCT (71.5 ± 21.7%, P = 0.036) but did not differ statistically compared to SSCT (78.2 ± 12.5%). In contrast, TFI after MSCT (50.2 ± 22.5%) was significantly lower compared to SSCT (P < 0.001). Interestingly, donor-derived TFI was found to be significantly improved after MSi-SSCT (18.8 ± 8.0%) compared to SSCT (1.9 ± 1.1%; P < 0.001), MSCT (0.0 ± 0.0%; P < 0.001), and MS-SSCT (3.4 ± 1.9%; P < 0.001). While analyses showed that both native and TGFß1-treated MSCs maintained characteristics of MSCs, the latter showed less migratory characteristics and was not detected in other organs. CONCLUSION: Co-transplanting SSCs and TGFß1-treated MSCs significantly improves the recovery of endogenous SSCs and increases the homing efficiency of transplanted SSCs. This procedure could become an efficient method to treat infertility in a clinical setup, once the safety of the technique has been proven.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Infertilidade Masculina/terapia , Transplante de Células-Tronco Mesenquimais , Animais , Bussulfano/administração & dosagem , Cloreto de Cádmio/administração & dosagem , Sobrevivência Celular , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese , Fator de Crescimento Transformador beta/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA