Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581105

RESUMO

Human Cytomegalovirus (HCMV) is a ubiquitous pathogen that has coevolved with its host and, in doing so, is highly efficient in undermining antiviral responses that limit successful infections. As a result, HCMV infections are highly problematic in individuals with weakened or underdeveloped immune systems, including transplant recipients and newborns. Understanding how HCMV controls the microenvironment of an infected cell so as to favor productive replication is of critical importance. To this end, we took an unbiased proteomics approach to identify the highly reversible, stress-induced, posttranslational modification (PTM) protein S-nitrosylation on viral proteins to determine the biological impact on viral replication. We identified protein S-nitrosylation of 13 viral proteins during infection of highly permissive fibroblasts. One of these proteins, pp71, is critical for efficient viral replication, as it undermines host antiviral responses, including stimulator of interferon genes (STING) activation. By exploiting site-directed mutagenesis of the specific amino acids we identified in pp71 as protein S-nitrosylated, we found this pp71 PTM diminishes its ability to undermine antiviral responses induced by the STING pathway. Our results suggest a model in which protein S-nitrosylation may function as a host response to viral infection that limits viral spread.IMPORTANCE In order for a pathogen to establish a successful infection, it must undermine the host cell responses inhibitory to the pathogen. As such, herpesviruses encode multiple viral proteins that antagonize each host antiviral response, thereby allowing for efficient viral replication. Human Cytomegalovirus encodes several factors that limit host countermeasures to infection, including pp71. Herein, we identified a previously unreported posttranslational modification of pp71, protein S-nitrosylation. Using site-directed mutagenesis, we mutated the specific sites of this modification thereby blocking this pp71 posttranslational modification. In contexts where pp71 is not protein S-nitrosylated, host antiviral response was inhibited. The net result of this posttranslational modification is to render a viral protein with diminished abilities to block host responses to infection. This novel work supports a model in which protein S-nitrosylation may be an additional mechanism in which a cell inhibits a pathogen during the course of infection.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Proteína S/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/genética , Replicação Viral
2.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089702

RESUMO

Infections with human cytomegalovirus (HCMV) are highly prevalent in the general population as the virus has evolved the capacity to undergo distinct replication strategies resulting in lytic, persistent, and latent infections. During the latent life cycle, HCMV resides in subsets of cells within the hematopoietic cell compartment, including hematopoietic progenitor cells (HPCs) and peripheral blood monocytes. Since only a small fraction of these cell types harbor viral genomes during natural latency, identification and analysis of distinct changes mediated by viral infection are difficult to assess. In order to characterize latent infections of HPCs, we used an approach that involves complementation of deficiencies within the human pyrimidine salvage pathway, thus allowing for conversion of labeled uracil into rUTP. Here, we report the development of a recombinant HCMV that complements the defective human pyrimidine salvage pathway, allowing incorporation of thiol containing UTP into all RNA species that are synthesized within an infected cell. This virus grows to wild-type kinetics and can establish a latent infection within two distinct culture models of HCMV latency. Using this recombinant HCMV, we report the specific labeling of transcripts only within infected cells. These transcripts reveal a transcriptional landscape during HCMV latency that is distinct from uninfected cells. The utility of this labeling system allows for the identification of distinct changes within host transcripts and will shed light on characterizing how HCMV establishes and maintains latency.IMPORTANCE HCMV is a significant pathogen that accounts for a substantial amount of complications within the immunosuppressed and immunocompromised. Of particular significance is the capacity of HCMV to reactivate within solid tissue and bone marrow transplant recipients. While it is known that HCMV latency resides within a fraction of HPCs and monocytes, the exact subset of cells that harbor latent viral genomes during natural infections remain uncharacterized. The capacity to identify changes within the host transcriptome during latent infections is critical for developing approaches that therapeutically or physically eliminate latent viral genome containing cells and will represent a major breakthrough for reducing complications due to HCMV reactivation posttransplant. In this report, we describe the generation and use of a recombinant HCMV that allows specific and distinct labeling of RNA species that are produced within virally infected cells. This is a critical first step in identifying how HCMV affects the host cell during latency and more importantly, allows one to characterize cells that harbor latent HCMV.


Assuntos
Citomegalovirus/genética , Pentosiltransferases/genética , RNA Viral/genética , Coloração e Rotulagem/métodos , Tiouracila/análogos & derivados , Uracila/química , Células Cultivadas , Citomegalovirus/enzimologia , Infecções por Citomegalovirus , Humanos , Tiouracila/química , Latência Viral/genética
3.
J Virol ; 90(8): 4249-4253, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865717

RESUMO

The successful colonization of the majority of the population by human cytomegalovirus is a direct result of the virus's ability to establish and, more specifically, reactivate from latency. The underlying cellular factors involved in viral reactivation remain unknown. Here, we show that the host complexfacilitateschromatintranscription (FACT) binds to the major immediate early promoter (MIEP) and that inhibition of this complex reduces MIEP transactivation, thus inhibiting viral reactivation.


Assuntos
Citomegalovirus/fisiologia , Genes Precoces , Proteínas Virais/antagonistas & inibidores , Replicação Viral , Citomegalovirus/genética , Fibroblastos , Regulação Viral da Expressão Gênica , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas , Transcrição Gênica , Proteínas Virais/metabolismo , Latência Viral , Liberação de Vírus
4.
J Virol ; 89(5): 2615-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520507

RESUMO

UNLABELLED: Human herpesvirus 6A (HHV-6A), a member of the betaherpesvirus family, is associated with several human diseases. Like all herpesviruses, HHV-6A establishes a lifelong, latent infection in its host. Reactivation of HHV-6A is frequent within the immunosuppressed and immunocompromised populations and results in lytic viral replication within multiple organs, often leading to severe disease. MicroRNAs (miRNAs) are key regulators of multiple cellular processes that regulate the translation of specific transcripts. miRNAs carried by herpesviruses play important roles in modulating the host cell, thereby facilitating a suitable environment for productive viral infection and/or latency. Currently, there are approximately 150 known human herpesvirus-encoded miRNAs, although an miRNA(s) encoded by HHV-6A has yet to be reported. We hypothesized that HHV-6A, like other members of the human herpesvirus family, encodes miRNAs, which function to promote viral infection. We utilized deep sequencing of small RNA species isolated from cells harboring HHV-6A to identify five novel small noncoding RNA species that originate from the viral genome, one of which has the characteristics of a viral miRNA. These RNAs are expressed during productive infection by either bacterial artificial chromosome (BAC)-derived virus in Jjhan cells or wild-type HHV-6A strain U1102 virus in HSB2 cells and are associated with the RNA induced silencing complex (RISC) machinery. Growth analyses of mutant viruses that lack each individual miRNA revealed that a viral miRNA candidate (miR-U86) targets the HHV-6A IE gene U86, thereby regulating lytic replication. The identification and biological characterization of this HHV-6A-specific miRNA is the first step to defining how the virus regulates its life cycle. IMPORTANCE: A majority of the human population is infected with human herpesvirus 6A (HHV-6A), a betaherpesvirus family member. Infections usually occur in young children, and upon resolution, the virus remains in a latent state within the host. Importantly, during times of weakened immune responses, the virus can reactivate and is correlated with significant disease states. Viruses encode many different types of factors that both undermine the host antiviral response and regulate viral replication, including small RNA species called microRNAs (miRNAs). Here we report that HHV-6A encodes at least one miRNA, which we named miR-U86. We have characterized the requirement of this viral miRNA and its impact on the viral life cycle and found that it functions to regulate a viral protein important for efficient viral replication. Our data suggest that viral miRNAs are important for HHV-6A and that they may serve as an important therapeutic target to inhibit the virus.


Assuntos
Herpesvirus Humano 6/fisiologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Replicação Viral , Linhagem Celular , Perfilação da Expressão Gênica , Herpesvirus Humano 6/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , RNA Viral/genética
5.
J Am Soc Nephrol ; 26(3): 647-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25071083

RESUMO

Rhophilin-1 is a Rho GTPase-interacting protein, the biologic function of which is largely unknown. Here, we identify and describe the functional role of Rhophilin-1 as a novel podocyte-specific protein of the kidney glomerulus. Rhophilin-1 knockout mice were phenotypically normal at birth but developed albuminuria at about 2 weeks of age. Kidneys from severely albuminuric mice revealed widespread podocyte foot process effacement, thickening of the glomerular basement membrane, and FSGS-like lesions. The absence of any overt changes in the expression of podocyte proteins at the onset of proteinuria suggested that the primary cause of podocyte abnormalities in Rhpn1-null mice was the result of cell-autonomous, Rhophilin-1-dependent signaling events. In culture, Rhophilin-1 was detected at the plasma membrane leading edge of primary podocytes, where it elicited remodeling of the actin cytoskeleton network. This effect of Rhophilin-1 on actin cytoskeleton organization associated with inhibitory effects on Rho-dependent phosphorylation of the myosin regulatory light chain and stress fiber formation. Conversely, phosphorylation of myosin regulatory light chain increased in podocyte foot processes of Rhpn1(-/-) mice, implicating altered actinomyosin contractility in foot process effacement and compromised filtration capacity. Targeted deletion of RhoA in podocytes of Rhophilin-1 knockout mice exacerbated the renal injury. Taken together, our results indicate that Rhophilin-1 is essential for the integrity of the glomerular filtration barrier and that this protein is a key determinant of podocyte cytoskeleton architecture.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Citoesqueleto/fisiologia , Podócitos/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
J Virol ; 87(22): 12020-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006442

RESUMO

Although serious human diseases have been correlated with human herpesvirus 6A (HHV-6A) and HHV-6B, the lack of animal models has prevented studies which would more definitively link these viral infections to disease. HHV-6A and HHV-6B have recently been classified as two distinct viruses, and in this study we focused specifically on developing an in vivo model for HHV-6A. Here we show that Rag2⁻/⁻γc⁻/⁻ mice humanized with cord blood-derived human hematopoietic stem cells produce human T cells that express the major HHV-6A receptor, CD46. Both cell-associated and cell-free viral transmission of HHV-6A into the peritoneal cavity resulted in detectable viral DNA in at least one of the samples (blood, bone marrow, etc.) analyzed from nearly all engrafted mice. Organs and cells positive for HHV-6A DNA were the plasma and cellular blood fractions, bone marrow, lymph node, and thymic samples; control mice had undetectable viral DNA. We also noted viral pathogenic effects on certain T cell populations. Specific thymocyte populations, including CD3⁻ CD4⁺ CD8⁻ and CD3⁺ CD4⁻ cells, were significantly modified in humanized mice infected by cell-associated transmission. In addition, we detected significantly increased proportions of CD4⁺ CD8⁺ cells in the blood of animals infected by cell-free transmission. These findings provide additional evidence that HHV-6A may play a role in human immunodeficiencies. These results indicate that humanized mice can be used to study HHV-6A in vivo infection and replication as well as aspects of viral pathogenesis.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células-Tronco Hematopoéticas/patologia , Herpesvirus Humano 6/patogenicidade , Infecções por Roseolovirus/transmissão , Replicação Viral , Animais , Medula Óssea/imunologia , Medula Óssea/patologia , Medula Óssea/virologia , Células Cultivadas , DNA Viral/genética , Sangue Fetal/imunologia , Sangue Fetal/virologia , Citometria de Fluxo , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/virologia , Humanos , Linfonodos/imunologia , Linfonodos/patologia , Linfonodos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Roseolovirus/imunologia , Infecções por Roseolovirus/virologia , Baço/imunologia , Baço/patologia , Baço/virologia , Timo/imunologia , Timo/patologia , Timo/virologia
7.
Kidney Int ; 84(3): 591-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23783239

RESUMO

Glomerular diseases represent major diagnostic and therapeutic challenges with classification of these diseases largely relying on clinical and histological findings. Elucidation of molecular mechanisms of progressive glomerular disease could facilitate quicker development. High-throughput expression profiling reveals all genes and proteins expressed in tissue and cell samples. These methods are very appropriate for glomerular disease as pure glomeruli can be obtained from kidney biopsies. To date, proteome profiling data are only available for normal glomeruli, but more robust transcriptome methods have been applied to many mouse model and a few human glomerular diseases. Here, we have carried out a meta-analysis of currently available glomerular expression data in normal and diseased glomeruli from mice, rats, and humans using a standardized protocol. The results suggest a potential for glomerular transcriptomics in identifying pathogenic pathways, disease monitoring, and the feasibility to use animal models to study human glomerular disease. We also found that currently there are no specific consensus biomarkers or pathways among different disease data sets, indicating there are likely disease-specific mechanisms and expression profiles. Thus, further transcriptomics and proteomics analysis, especially that of dynamic changes in the diseases, may lead to novel diagnostics tools and specific pharmacologic therapies.


Assuntos
Glomerulonefrite/genética , Glomérulos Renais/metabolismo , Transcriptoma/genética , Animais , Biópsia , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Glomerulonefrite/metabolismo , Humanos , Glomérulos Renais/patologia , Camundongos , Ratos
8.
J Am Soc Nephrol ; 22(11): 2037-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21949092

RESUMO

Unbiased transcriptome profiling and functional genomics approaches identified glucocorticoid-induced transcript 1 (GLCCI1) as being a transcript highly specific for the glomerulus, but its role in glomerular development and disease is unknown. Here, we report that mouse glomeruli express far greater amounts of Glcci1 protein compared with the rest of the kidney. RT-PCR and Western blotting demonstrated that mouse glomerular Glcci1 is approximately 60 kD and localizes to the cytoplasm of podocytes in mature glomeruli. In the fetal kidney, intense Glcci1 expression occurs at the capillary-loop stage of glomerular development. Using gene knockdown in zebrafish with morpholinos, morphants lacking Glcci1 function had collapsed glomeruli with foot-process effacement. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. Taken together, these data suggest that Glcci1 promotes the normal development and maintenance of podocyte structure and function.


Assuntos
Glomérulos Renais/fisiopatologia , Podócitos/fisiologia , Pronefro/fisiopatologia , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Receptores de Glucocorticoides/deficiência , Animais , Citoplasma/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glucocorticoides/farmacologia , Glomérulos Renais/anormalidades , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oligonucleotídeos Antissenso/farmacologia , Pronefro/anormalidades , Proteinúria/patologia , Coelhos , Receptores de Glucocorticoides/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
9.
Dev Dyn ; 240(12): 2646-56, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22072575

RESUMO

The Crumbs family of transmembrane proteins has an important role in the differentiation of the apical membrane domain in various cell types, regulating such processes as epithelial cell polarization. The mammalian Crumbs protein family is composed of three members. Here, we inactivated the mouse Crb2 gene with gene-targeting techniques and found that the protein is crucial for early embryonic development with severe abnormalities appearing in Crb2-deficient embryos at late-gastrulation. Our findings indicate that the primary defect in the mutant embryos is disturbed polarity of the epiblast cells at the primitive streak, which affects epithelial to mesenchymal transition (EMT) during gastrulation, resulting in impaired mesoderm and endoderm formation, and embryonic lethality by embryonic day 12.5. These findings therefore indicate a novel role for the Crumbs family of proteins.


Assuntos
Polaridade Celular/fisiologia , Endoderma/embriologia , Transição Epitelial-Mesenquimal/fisiologia , Gastrulação/fisiologia , Proteínas de Membrana/biossíntese , Mesoderma/embriologia , Animais , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Endoderma/ultraestrutura , Proteínas de Membrana/genética , Mesoderma/ultraestrutura , Camundongos , Camundongos Mutantes
10.
Sci Adv ; 8(43): eadd1168, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288299

RESUMO

Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.

11.
Viruses ; 10(11)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405048

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus for which there is no vaccine or cure. This viral infection, once acquired, is life-long, residing latently in hematopoietic cells. However, latently infected individuals with weakened immune systems often undergo HCMV reactivation, which can cause serious complications in immunosuppressed and immunocompromised patients. Current anti-viral therapies target late stages of viral replication, and are often met with therapeutic resistance, necessitating the development of novel therapeutics. In this current study, we identified a naturally-occurring flavonoid compound, deguelin, which inhibits HCMV lytic replication. Our findings reveal that nanomolar concentrations of deguelin significantly suppress the production of the infectious virus. Further, we show that deguelin inhibits the lytic cycle during the phase of the replication cycle consistent with early (E) gene and protein expression. Importantly, our data reveal that deguelin inhibits replication of a ganciclovir-resistant strain of HCMV. Together, our findings identify a novel, naturally occurring compound that may prove useful in the treatment of HCMV replication.


Assuntos
Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Flavonoides/farmacologia , Rotenona/análogos & derivados , Replicação Viral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Viral , Flavonoides/química , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Rotenona/química , Rotenona/farmacologia , Internalização do Vírus/efeitos dos fármacos
12.
Dev Cell ; 45(1): 83-100.e7, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634939

RESUMO

Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.


Assuntos
Núcleo Celular/fisiologia , Infecções por Citomegalovirus/virologia , Complexo de Golgi/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Montagem de Vírus/fisiologia , Movimento Celular , Núcleo Celular/virologia , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Citomegalovirus/patogenicidade , Complexo de Golgi/fisiologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Centro Organizador dos Microtúbulos/virologia
13.
PLoS One ; 13(8): e0202400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30125302

RESUMO

The evidence that gene mutations in the polarity determinant Crumbs homologs-2 (CRB2) cause congenital nephrotic syndrome suggests the functional importance of this gene product in podocyte development. Because another isoform, CRB3, was reported to repress the mechanistic/mammalian target of the rapamycin complex 1 (mTORC1) pathway, we examined the role of CRB2 function in developing podocytes in relation to mTORC1. In HEK-293 and MDCK cells constitutively expressing CRB2, we found that the protein localized to the apicolateral side of the cell plasma membrane and that this plasma membrane assembly required N-glycosylation. Confocal microscopy of the neonate mouse kidney revealed that both the tyrosine-phosphorylated form and non-phosphorylated form of CRB2 commence at the S-shaped body stage at the apicolateral side of podocyte precursor cells and move to foot processes in a capillary tuft pattern. The pattern of phosphorylated mTOR in developing podocytes was similar to that of CRB2 tyrosine phosphorylation. Additionally, the lack of a tyrosine phosphorylation site on CRB2 led to the reduced sensitivity of mTORC1 activation in response to energy starvation. CRB2 may play an important role in the mechanistic pathway of developing podocytes through tyrosine phosphorylation by associating with mTORC1 activation.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Podócitos/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas de Transporte/genética , Membrana Celular/genética , Cães , Glicosilação , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/genética , Camundongos , Fosforilação/genética , Podócitos/citologia , Células-Tronco/citologia
14.
Biophys J ; 92(3): 977-88, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17085493

RESUMO

Phosphoglycerate mutases (PGMs) catalyze the isomerization of 2- and 3-phosphoglycerates and are essential for glucose metabolism in most organisms. This study reports the production, structure, and molecular dynamics analysis of Bacillus anthracis cofactor-independent PGM (iPGM). The three-dimensional structure of B. anthracis PGM is composed of two structural and functional domains, the phosphatase and transferase. The structural relationship between these two domains is different than in the B. stearothermophilus iPGM structure determined previously. However, the structures of the two domains of B. anthracis iPGM show a high degree of similarity to those in B. stearothermophilus iPGM. The novel domain arrangement in B. anthracis iPGM and the dynamic property of these domains is directly linked to the mechanism of enzyme catalysis, in which substrate binding is proposed to result in close association of the two domains. The structure of B. anthracis iPGM and the molecular dynamics of this structure provide unique insight into the mechanism of iPGM catalysis, in particular the roles of changes in coordination geometry of the enzyme's two bivalent metal ions and the regulation of this enzyme's activity by changes in intracellular pH during spore formation and germination in Bacillus species.


Assuntos
Bacillus anthracis/enzimologia , Modelos Químicos , Modelos Moleculares , Fosfoglicerato Mutase/química , Fosfoglicerato Mutase/ultraestrutura , Catálise , Proliferação de Células , Simulação por Computador , Ativação Enzimática , Isoenzimas/química , Conformação Proteica , Estrutura Terciária de Proteína , Esporos Bacterianos
15.
J Am Soc Nephrol ; 18(3): 689-97, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17251388

RESUMO

The glomerular capillary tuft is a highly specialized microcapillary that is dedicated to function as a sophisticated molecular sieve. The glomerulus filter has a unique molecular composition, and several essential glomerular proteins are expressed in the kidney exclusively by glomerular podocytes. A catalog of >300 glomerulus-upregulated transcripts that were identified using expressed sequence tag profiling and microarray analysis was published recently. This study characterized the expression profile of five glomerulus-upregulated transcripts/proteins (ehd3, dendrin, sh2d4a, plekhh2, and 2310066E14Rik) in detail. The expression pattern of these novel glomerular transcripts in various mouse tissues was studied using reverse transcriptase-PCR, Northern blotting, and in situ hybridization. For studying the distribution of corresponding proteins, polyclonal antibodies were raised against the gene products, and Western blotting, immunofluorescence, and immunoelectron microscopic analyses were performed. Remarkably, it was discovered that all five transcripts/proteins were expressed in the kidney exclusively by glomerular cells. Ehd3 was expressed only by glomerular endothelial cells. Importantly, ehd3 is the first gene ever shown to be expressed exclusively by glomerular endothelial cells and not by other endothelial cells in the kidney. Dendrin, sh2d4a, plekhh2, and 2310066E14Rik, however, were transcribed solely by podocytes. With the use of polyclonal antibodies, dendrin, sh2d4a, and plekhh2 proteins were localized to the slit diaphragm and the foot process, whereas 2310066E14Rik protein was localized to the podocyte major processes and cell body. This study provides fresh insights into glomerular biology and uncovers new possibilities to explore the role of these novel proteins in the glomerular physiology and pathology.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Northern Blotting , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto , Glomérulos Renais/citologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Glycobiology ; 16(8): 757-65, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16638841

RESUMO

The bacterial hyaluronan lyases (Hyals) that degrade hyaluronan, an important component of the extracellular matrix, are involved in microbial spread. Inhibitors of these enzymes are essential in investigation of the role of hyaluronan and Hyal in bacterial infections and constitute a new class of antibiotics against Hyal-producing bacteria. Recently, we identified 1,3-diacetylbenzimidazole-2-thione and related molecules as inhibitors of streptococcal Hyal. One of such compounds, 1-decyl-2-(4-sulfamoyloxyphenyl)-1-indol-6-yl sulfamate, was co-crystallized in a complex with Streptococcus pneumoniae Hyal and its structure elucidated. The resultant X-ray structure demonstrates that this inhibitor fits in the enzymatic active site via interactions resembling the binding mode of the natural hyaluronan substrate. X-ray structural analysis also indicates binding interactions with the catalytic residues and those of a catalytically essential hydrophobic patch. An IC50 value of 11 microM for Hyal from Streptococcus agalactiae (strain 4755) qualifies this phenylindole compound as one of the most potent Hyal inhibitors known to date. The structural data suggested a similar binding mode for N-(3-phenylpropionyl)-benzoxazole-2-thione. This new compound's inhibitory properties were confirmed resulting in discovery of yet another Hyal inhibitor (IC50 of 15 microM). These benzoxazole-2-thiones constitute a new class of inhibitors of bacterial Hyals and are well suited for further optimization of their selectivity, potency, and pharmacokinetic properties.


Assuntos
Benzoxazóis/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Polissacarídeo-Liases/antagonistas & inibidores , Streptococcus pneumoniae/enzimologia , Tionas/química , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Água/química , Difração de Raios X
17.
J Biol Chem ; 278(5): 3079-88, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12446724

RESUMO

Streptococcus pneumoniae hyaluronate lyase is a surface antigen of this Gram-positive human bacterial pathogen. The primary function of this enzyme is the degradation of hyaluronan, which is a major component of the extracellular matrix of the tissues of vertebrates and of some bacteria. The enzyme degrades its substrate through a beta-elimination process called proton acceptance and donation. The inherent part of this degradation is a processive mode of action of the enzyme degrading hyaluronan into unsaturated disaccharide hyaluronic acid blocks from the reducing to the nonreducing end of the polymer following the initial random endolytic binding to the substrate. The final degradation product is the unsaturated disaccharide hyaluronic acid. The residues of the enzyme that are involved in various aspects of such degradation were identified based on the three-dimensional structures of the native enzyme and its complexes with hyaluronan substrates of various lengths. The catalytic residues were identified to be Asn(349), His(399), and Tyr(408). The residues responsible for the release of the product of the reaction were identified as Glu(388), Asp(398), and Thr(400), and they were termed negative patch. The hydrophobic residues Trp(291), Trp(292), and Phe(343) were found to be responsible for the precise positioning of the substrate for enzyme catalysis and named hydrophobic patch. The comparison of the specific activities and kinetic properties of the wild type and the mutant enzymes involving the hydrophobic patch residues W292A, F343V, W291A/W292A, W292A/F343V, and W291A/W292A/F343V allowed for the characterization of every mutant and for the correlation of the activity and kinetic properties of the enzyme with its structure as well as the mechanism of catalysis.


Assuntos
Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Configuração de Carboidratos , Sequência de Carboidratos , Domínio Catalítico , Clonagem Molecular , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligossacarídeos/química , Polissacarídeo-Liases/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
J Biol Chem ; 279(44): 45990-7, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15322107

RESUMO

Hyaluronidases are enzymes that degrade hyaluronan, an important component of the extracellular matrix. The mammalian hyaluronidases are considered to be involved in many (patho)physiological processes like fertilization, tumor growth, and metastasis. Bacterial hyaluronidases, also termed hyaluronate lyases, contribute to the spreading of microorganisms in tissues. Such roles for hyaluronidases suggest that inhibitors could be useful pharmacological tools. Potent and selective inhibitors are not known to date, although L-ascorbic acid has been reported to be a weak inhibitor of Streptococcus pneumoniae hyaluronate lyase (SpnHL). The x-ray structure of SpnHL complexed with L-ascorbic acid has been elucidated suggesting that additional hydrophobic interactions might increase inhibitory activity. Here we show that L-ascorbic acid 6-hexadecanoate (Vcpal) is a potent inhibitor of both streptococcal and bovine testicular hyaluronidase (BTH). Vcpal showed strong inhibition of Streptococcus agalactiae hyaluronate lyase with an IC(50) of 4 microM and weaker inhibition of SpnHL and BTH with IC(50) values of 100 and 56 microM, respectively. To date, Vcpal has proved to be one of the most potent inhibitors of hyaluronidase. We also determined the x-ray structure of the SpnHL-Vcpal complex and confirmed the hypothesis that additional hydrophobic interactions with Phe-343, His-399, and Thr-400 in the active site led to increased inhibition. A homology structural model of BTH was also generated to suggest binding modes of Vcpal to this hyaluronidase. The long alkyl chain seemed to interact with an extended, hydrophobic channel formed by mostly conserved amino acids Ala-84, Leu-91, Tyr-93, Tyr-220, and Leu-344 in BTH.


Assuntos
Ácido Ascórbico/farmacologia , Inibidores Enzimáticos/química , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/química , Palmitatos/farmacologia , Streptococcus agalactiae/enzimologia , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Animais , Ácido Ascórbico/química , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Palmitatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA