Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(4): 483-497, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795846

RESUMO

Heart disease is a significant burden on global health care systems and is a leading cause of death each year. To improve our understanding of heart disease, high quality disease models are needed. These will facilitate the discovery and development of new treatments for heart disease. Traditionally, researchers have relied on 2D monolayer systems or animal models of heart disease to elucidate pathophysiology and drug responses. Heart-on-a-chip (HOC) technology is an emerging field where cardiomyocytes among other cell types in the heart can be used to generate functional, beating cardiac microtissues that recapitulate many features of the human heart. HOC models are showing great promise as disease modeling platforms and are poised to serve as important tools in the drug development pipeline. By leveraging advances in human pluripotent stem cell-derived cardiomyocyte biology and microfabrication technology, diseased HOCs are highly tuneable and can be generated via different approaches such as: using cells with defined genetic backgrounds (patient-derived cells), adding small molecules, modifying the cells' environment, altering cell ratio/composition of microtissues, among others. HOCs have been used to faithfully model aspects of arrhythmia, fibrosis, infection, cardiomyopathies, and ischemia, to name a few. In this review, we highlight recent advances in disease modeling using HOC systems, describing instances where these models outperformed other models in terms of reproducing disease phenotypes and/or led to drug development.


Assuntos
Cardiomiopatias , Cardiopatias , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Humanos , Cardiopatias/terapia , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Cardiomiopatias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Dispositivos Lab-On-A-Chip
2.
Semin Cell Dev Biol ; 101: 78-86, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31791693

RESUMO

Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.


Assuntos
Células Endoteliais/metabolismo , Fibrose/metabolismo , Animais , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibrose/patologia , Humanos
3.
Am J Physiol Heart Circ Physiol ; 322(4): H647-H680, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179976

RESUMO

Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.


Assuntos
Microvasos , Doenças Vasculares , Animais , Endotélio Vascular/metabolismo , Estresse Oxidativo , Regeneração , Doenças Vasculares/metabolismo
4.
Stem Cells ; 39(8): 1008-1016, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33786918

RESUMO

Due to the integration of recent advances in stem cell biology, materials science, and engineering, the field of cardiac tissue engineering has been rapidly progressing toward developing more accurate functional 3D cardiac microtissues from human cell sources. These engineered tissues enable screening of cardiotoxic drugs, disease modeling (eg, by using cells from specific genetic backgrounds or modifying environmental conditions) and can serve as novel drug development platforms. This concise review presents the most recent advances and improvements in cardiac tissue formation, including cardiomyocyte maturation and disease modeling.


Assuntos
Miócitos Cardíacos , Engenharia Tecidual , Humanos , Células-Tronco
5.
Nat Mater ; 15(6): 669-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26950595

RESUMO

We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and for cell seeding in the parenchyma, enabling extensive remodelling while maintaining an open-vessel lumen. The incorporation of nanopores and micro-holes in the vessel walls enhances permeability, and permits intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. We also show that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips process clinically relevant drugs delivered through the vasculature, and that millimetre-thick cardiac tissues can be engineered in a scalable manner. Moreover, we demonstrate that AngioChip cardiac tissues implanted with direct surgical anastomosis to the femoral vessels of rat hindlimbs establish immediate blood perfusion.


Assuntos
Materiais Biocompatíveis/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Fígado/metabolismo , Monócitos/metabolismo , Miocárdio/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Anastomose Cirúrgica , Animais , Fêmur/irrigação sanguínea , Fêmur/citologia , Fêmur/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Fígado/irrigação sanguínea , Fígado/citologia , Monócitos/citologia , Miocárdio/metabolismo , Porosidade , Ratos , Ratos Endogâmicos Lew , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
6.
Methods ; 101: 21-6, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546730

RESUMO

Human pluripotent stem cells (hPSCs)-derived cardiomyocytes (hPSC-CMs) represent a potential indefinite cell supply for cardiac tissue engineering and possibly regenerative medicine applications. However, these cells are immature compared with adult ventricular cardiomyocytes. In order to overcome this limitation, an engineered platform, called biowire, was devised to provide cultured cardiomyocytes important biomimetic cues present during embryo development, such as three-dimensional cell culture, extracellular matrix composition, soluble factors and pacing through electrical stimulation, to induce the maturation of hPSC-CMs in vitro.


Assuntos
Técnicas de Cultura de Células , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular , Estimulação Elétrica , Humanos
7.
Nat Methods ; 10(8): 781-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23793239

RESUMO

Directed differentiation protocols enable derivation of cardiomyocytes from human pluripotent stem cells (hPSCs) and permit engineering of human myocardium in vitro. However, hPSC-derived cardiomyocytes are reflective of very early human development, limiting their utility in the generation of in vitro models of mature myocardium. Here we describe a platform that combines three-dimensional cell cultivation with electrical stimulation to mature hPSC-derived cardiac tissues. We used quantitative structural, molecular and electrophysiological analyses to explain the responses of immature human myocardium to electrical stimulation and pacing. We demonstrated that the engineered platform allows for the generation of three-dimensional, aligned cardiac tissues (biowires) with frequent striations. Biowires submitted to electrical stimulation had markedly increased myofibril ultrastructural organization, elevated conduction velocity and improved both electrophysiological and Ca(2+) handling properties compared to nonstimulated controls. These changes were in agreement with cardiomyocyte maturation and were dependent on the stimulation rate.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Diferenciação Celular/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Humanos , Microscopia Eletrônica de Transmissão , Miocárdio/ultraestrutura
8.
Crit Rev Biomed Eng ; 41(2): 91-123, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24580565

RESUMO

The microvasculature is a dynamic cellular system necessary for tissue health and function. Therapeutic strategies that target the microvasculature are expanding and evolving, including those promoting angiogenesis and microvascular expansion. When considering how to manipulate angiogenesis, either as part of a tissue construction approach or a therapy to improve tissue blood flow, it is important to know the microenvironmental factors that regulate and direct neovessel sprouting and growth. Much is known concerning both diffusible and matrix-bound angiogenic factors, which stimulate and guide angiogenic activity. How the other aspects of the extravascular microenvironment, including tissue biomechanics and structure, influence new vessel formation is less well known. Recent research, however, is providing new insights into these mechanisms and demonstrating that the extent and character of angiogenesis (and the resulting new microcirculation) is significantly affected. These observations and the resulting implications with respect to tissue construction and microvascular therapy are addressed.


Assuntos
Microcirculação/fisiologia , Microvasos/fisiologia , Neovascularização Fisiológica/fisiologia , Animais , Microambiente Celular/fisiologia , Hemodinâmica , Humanos , Modelos Cardiovasculares
9.
Arterioscler Thromb Vasc Biol ; 32(1): 5-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22053070

RESUMO

OBJECTIVE: During neovascularization, the end result is a new functional microcirculation composed of a network of mature microvessels with specific topologies. Although much is known concerning the mechanisms underlying the initiation of angiogenesis, it remains unclear how the final architecture of microcirculatory beds is regulated. To begin to address this, we determined the impact of angiogenic neovessel prepatterning on the final microvascular network topology using a model of implant neovascularization. METHODS AND RESULTS: We used 3D direct-write bioprinting or physical constraints in a manner permitting postangiogenesis vascular remodeling and adaptation to pattern angiogenic microvascular precursors (neovessels formed from isolated microvessel segments) in 3D collagen gels before implantation and subsequent network formation. Neovasculatures prepatterned into parallel arrays formed functional networks after 4 weeks postimplantation but lost the prepatterned architecture. However, maintenance of uniaxial physical constraints during postangiogenesis remodeling of the implanted neovasculatures produced networks with aligned microvessels, as well as an altered proportional distribution of arterioles, capillaries, and venules. CONCLUSIONS: Here we show that network topology resulting from implanted microvessel precursors is independent from prepatterning of precursors but can be influenced by a patterning stimulus involving tissue deformation during postangiogenesis remodeling and maturation.


Assuntos
Microvasos/anatomia & histologia , Microvasos/crescimento & desenvolvimento , Modelos Cardiovasculares , Neovascularização Fisiológica , Animais , Bioprótese , Prótese Vascular , Simulação por Computador , Análise de Fourier , Masculino , Microvasos/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
10.
ACS Mater Au ; 3(4): 360-370, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38090129

RESUMO

Cardiac fibrosis is a significant contributor to heart failure and is characterized by abnormal ECM deposition and impaired contractile function. We have previously developed a model of cardiac fibrosis via TGF-ß treatment of engineered microtissues using heart-on-a-chip technology which incorporates human induced pluripotent stem cell-derived cardiomyocytes and cardiac fibroblasts. Here, we describe that these cardiac fibrotic tissues expressed markers associated with cellular senescence via transcriptomic analysis. Treatment of fibrotic tissues with the senolytic drugs dasatinib and quercetin (D+Q) led to an improvement of contractile function, reduced passive tension, and downregulated senescence-related gene expression, an outcome we were previously unable to achieve using standard-of-care drugs. The improvement in functional parameters was also associated with a reduction in fibroblast density, though no changes in absolute collagen deposition were observed. This study demonstrates the benefit of senolytic treatment for cardiac fibrosis in a human-relevant model, supporting data in animal models, and will enable the further elucidation of cell-specific effects of senolytics and how they impact cardiac fibrosis and senescence.

11.
Nat Protoc ; 17(12): 2721-2738, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224469

RESUMO

Despite recent advances in the differentiation of human pluripotent stem cells into multiple cell types for application in replacement therapies, tissue vascularization remains a bottleneck for regenerative medicine. Fragments of primary microvessels (MVs) harvested from adipose tissue retain endothelialized lumens and perivascular cell coverage. We have used these MVs to support the survival and engraftment of transplanted human pluripotent stem cell-derived cardiomyocytes, pancreatic progenitors or primary human islets. MVs connect with host vessels, perfuse with blood and form a hierarchal vascular network in vivo after subcutaneous or intracardiac transplantation. MVs also display the ability to remodel and form stable vascular networks with long-term retention (>3.5 months). MVs can be cultured in 3D hydrogels in vitro, where they retain vessel shape and undergo angiogenic sprouting without the need for exogenous growth factor supplementation. Therefore, MVs offer a robust vascularization strategy for regenerative medicine approaches and a platform for angiogenic studies and drug testing in vitro. Here we describe in detail the protocol for: (1) the isolation of MVs from rat epididymal fat by limited collagenase digestion, followed by size-selective sieving; (2) the incorporation of MVs into 3D collagen hydrogels; (3) the in vitro culture of MVs in 3D gels for angiogenic studies; and (4) the in vivo transplantation of 3D hydrogels containing MVs into the mouse subcutis. The isolation procedure does not require highly specific equipment and can be performed in ~3 h by researchers with experience in rodent handling and cell culture.


Assuntos
Hidrogéis , Microvasos , Animais , Camundongos , Ratos , Tecido Adiposo/metabolismo , Diferenciação Celular , Colágeno , Neovascularização Fisiológica
12.
Pharmacol Ther ; 231: 107976, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480961

RESUMO

Tissue vascularization remains one of the outstanding challenges in regenerative medicine. Beyond its role in circulating oxygen and nutrients, the vasculature is critical for organ development, function and homeostasis. Importantly, effective vascular regeneration is key in generating large 3D tissues for regenerative medicine applications to enable the survival of cells post-transplantation, organ growth, and integration into the host system. Therefore, the absence of clinically applicable means of (re)generating vessels is one of the main obstacles in cell replacement therapy. In this review, we highlight cell-based vascularization strategies which demonstrate clinical potential, discuss their strengths and limitations and highlight the main obstacles hindering cell-based therapeutic vascularization.


Assuntos
Neovascularização Fisiológica , Engenharia Tecidual , Humanos , Neovascularização Patológica , Regeneração , Medicina Regenerativa
13.
Front Cardiovasc Med ; 9: 886687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665251

RESUMO

Aim: To uncover sex-related microvascular abnormalities that underlie the early presentation of reduced perfusion in leg skeletal muscle in a type II rat model of diabetic cardiomyopathy. Methods and Results: Diabetes was induced using a non-obese, diet-based, low-dose streptozotocin model in adult female (18 diabetic, 9 control) and male rats (29 diabetic, 11 control). Time-course monitoring over 12 months following diabetes induction was performed using echocardiography, treadmill exercise, photoacoustic imaging, flow-mediated dilation (FMD), histopathology, and immunohistochemistry. Diabetic rats maintained normal weights. Hypertension appeared late in both diabetic males (7 months) and females (10 months), while only diabetic males had elevated cholesterol (7 months). On echocardiography, all diabetic animals maintained normal ejection fraction and exhibited diastolic dysfunction, mild systolic dysfunction, and a slightly enlarged left ventricle. Exercise tolerance declined progressively and early in males (4 months), later in females (8 months); FMD showed lower baseline femoral arterial flow but unchanged reactivity in both sexes (5 months); and photoacoustic imaging showed lower tissue oxygen saturation in the legs of diabetic males (4 months) and diabetic females (10 months). Myocardial perfusion was normal in both sexes. Histopathology at the final timepoint of Month 10 (males) and Month 12 (females) revealed that myocardial microvasculature was normal in both vessel density and structure, thus explaining normal perfusion on imaging. However, leg muscle microvasculature exhibited perivascular smooth muscle thickening around small arterioles in diabetic females and around large arterioles in diabetic males, explaining the depressed readings on photoacoustic and FMD. Histology also confirmed the absence of commonly reported HFpEF markers, including microvessel rarefaction, myocardial fibrosis, and left ventricular hypertrophy. Conclusion: Exercise intolerance manifesting early in the progression of diabetic cardiomyopathy can be attributed to decreased perfusion to the leg skeletal muscle due to perivascular smooth muscle thickening around small arterioles in females and large arterioles in males. This microvascular abnormality was absent in the myocardium, where perfusion levels remained normal throughout the study. We conclude that although skeletal muscle microvascular dysfunction of the vasculature presents at different levels depending on sex, it consistently presents early in both sexes prior to overt cardiac changes such as rarefaction, fibrosis, or hypertrophy.

14.
Stem Cell Reports ; 17(4): 964-978, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35364010

RESUMO

Human pluripotent stem cell (hPSC)-derived pancreatic progenitors (PPs) can be differentiated into beta-like cells in vitro and in vivo and therefore have therapeutic potential for type 1 diabetes (T1D) treatment. However, the purity of PPs varies across different hPSC lines, differentiation protocols, and laboratories. The uncommitted cells may give rise to non-pancreatic endodermal, mesodermal, or ectodermal derivatives in vivo, hampering the safety of hPSC-derived PPs for clinical applications and their differentiation efficiency in research settings. Recently, proteomics and transcriptomics analyses identified glycoprotein 2 (GP2) as a PP-specific cell surface marker. The GP2-enriched PPs generate higher percentages of beta-like cells in vitro, but their potential in vivo remains to be elucidated. Here, we demonstrate that the GP2-enriched-PPs give rise to all pancreatic cells in vivo, including functional beta-like cells. Remarkably, GP2 enrichment eliminates the risk of teratomas, which establishes GP2 sorting as an effective method for PP purification and safe pancreatic differentiation.


Assuntos
Células Secretoras de Insulina , Células-Tronco Pluripotentes , Teratoma , Diferenciação Celular/fisiologia , Endoderma , Humanos , Células Secretoras de Insulina/metabolismo , Pâncreas , Células-Tronco Pluripotentes/metabolismo , Teratoma/etiologia , Teratoma/metabolismo
15.
Biomaterials ; 288: 121729, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35999080

RESUMO

Brain arteriovenous malformations (AVMs) are a disorder wherein abnormal, enlarged blood vessels connect arteries directly to veins, without an intervening capillary bed. AVMs are one of the leading causes of hemorrhagic stroke in children and young adults. Most human sporadic brain AVMs are associated with genetic activating mutations in the KRAS gene. Our goal was to develop an in vitro model that would allow for simultaneous morphological and functional phenotypic data capture in real time during AVM disease progression. By generating human endothelial cells harboring a clinically relevant mutation found in most human patients (activating mutations within the small GTPase KRAS) and seeding them in a dynamic microfluidic cell culture system that enables vessel formation and perfusion, we demonstrate that vessels formed by KRAS4AG12V mutant endothelial cells (ECs) were significantly wider and more leaky than vascular beds formed by wild-type ECs, recapitulating key structural and functional hallmarks of human AVM pathogenesis. Immunofluorescence staining revealed a breakdown of adherens junctions in mutant KRAS vessels, leading to increased vascular permeability, a hallmark of hemorrhagic stroke. Finally, pharmacological blockade of MEK kinase activity, but not PI3K inhibition, improved endothelial barrier function (decreased permeability) without affecting vessel diameter. Collectively, our studies describe the creation of human KRAS-dependent AVM-like vessels in vitro in a self-assembling microvessel platform that is amenable to phenotypic observation and drug delivery.


Assuntos
Malformações Arteriovenosas , Acidente Vascular Cerebral Hemorrágico , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/metabolismo , Malformações Arteriovenosas/patologia , Criança , Células Endoteliais/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Proteínas Proto-Oncogênicas p21(ras) , Adulto Jovem
16.
Biofabrication ; 14(4)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35896099

RESUMO

Obesity prevalence has reached pandemic proportions, leaving individuals at high risk for the development of diseases such as cancer and type 2 diabetes. In obesity, to accommodate excess lipid storage, adipocytes become hypertrophic, which is associated with an increased pro-inflammatory cytokine secretion and dysfunction of metabolic processes such as insulin signaling and lipolysis. Targeting adipocyte dysfunction is an important strategy to prevent the development of obesity-associated disease. However, it is unclear how accurately animal models reflect human biology, and the long-term culture of human hypertrophic adipocytes in anin vitro2D monolayer is challenging due to the buoyant nature of adipocytes. Here we describe the development of a human 3Din vitrodisease model that recapitulates hallmarks of obese adipocyte dysfunction. First, primary human adipose-derived mesenchymal stromal cells are embedded in hydrogel, and infiltrated into a thin cellulose scaffold. The thin microtissue profile allows for efficient assembly and image-based analysis. After adipocyte differentiation, the scaffold is stimulated with oleic or palmitic acid to mimic caloric overload. Using functional assays, we demonstrated that this treatment induced important obese adipocyte characteristics such as a larger lipid droplet size, increased basal lipolysis, insulin resistance and a change in macrophage gene expression through adipocyte-conditioned media. This 3D disease model mimics physiologically relevant hallmarks of obese adipocytes, to enable investigations into the mechanisms by which dysfunctional adipocytes contribute to disease.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos , Adipócitos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Humanos , Lipólise , Obesidade/complicações , Obesidade/metabolismo
17.
Acta Biomater ; 132: 149-161, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713861

RESUMO

Cardiac arrhythmias impact over 12 million people globally, with an increasing incidence of acquired arrhythmias. Although animal models have shed light onto fundamental arrhythmic mechanisms, species-specific differences and ethical concerns remain. Current human models using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) either lack the higher order tissue organization of the heart or implement unreliable arrhythmia induction techniques. Our goal was to develop a robust model of acquired arrhythmia by disrupting cardiomyocyte cell-cell signaling - one of the hallmarks of complex arrhythmias. Human 3D microtissues were generated by seeding hydrogel-embedded hiPSC-CMs and cardiac fibroblasts into an established microwell system designed to enable active and passive force assessment. Cell-cell signaling was disrupted using methyl-beta cyclodextrin (MBCD), previously shown to disassemble cardiac gap junctions. We demonstrate that arrhythmias were progressive and present in all microtissues within 5 days of treatment. Arrhythmic tissues exhibited reduced conduction velocity, an increased number of distinct action potentials, and reduced action potential cycle length. Arrhythmic tissues also showed significant reduction in contractile force generation, increased beating frequency, and increased passive tension and collagen deposition, in line with fibrosis. A subset of tissues with more complex arrhythmias exhibited 3D spatial differences in action potential propagation. Pharmacological and electrical defibrillation was successful. Transcriptomic data indicated an enrichment of genes consistent with cardiac arrhythmias. MBCD removal reversed the arrhythmic phenotype, resulting in synchronicity despite not resolving fibrosis. This innovative & reliable human-relevant 3D acquired arrhythmia model shows potential for improving our understanding of arrhythmic action potential conduction and furthering therapeutic development. STATEMENT OF SIGNIFICANCE: This work describes a 3D human model of cardiac arrhythmia-on-a-chip with high reproducibility, fidelity, and extensive functional applicability. To mimic in vivo conditions, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cardiac fibroblasts from healthy controls were combined in a biocompatible fibrin hydrogel and seeded between two deflectable polymeric rods. Using the innate functional properties of this 3D model as well as advanced optical imaging techniques we demonstrated dramatic changes in contraction rate, synchronicity, and electrophysiological conduction in arrhythmic tissues relative to controls. Taken together, these data demonstrate the distinctive potential of this new model for pathophysiological studies, and for arrhythmia drug testing applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Animais , Arritmias Cardíacas , Humanos , Miócitos Cardíacos , Reprodutibilidade dos Testes
18.
Cell Stem Cell ; 28(11): 1936-1949.e8, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34480863

RESUMO

Islet transplantation is a promising treatment for type 1 diabetes (T1D), yet the low donor pool, poor islet engraftment, and life-long immunosuppression prevent it from becoming the standard of care. Human embryonic stem cell (hESC)-derived pancreatic cells could eliminate donor shortages, but interventions to improve graft survival are needed. Here, we enhanced subcutaneous engraftment by employing a unique vascularization strategy based on ready-made microvessels (MVs) isolated from the adipose tissue. This resulted in improved cell survival and effective glucose response of both human islets and hESC-derived pancreatic cells, which ameliorated preexisting diabetes in three mouse models of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Embrionárias Humanas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 1/terapia , Humanos , Camundongos , Microvasos
19.
Nat Commun ; 12(1): 3155, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039977

RESUMO

Compact cardiomyocytes that make up the ventricular wall of the adult heart represent an important therapeutic target population for modeling and treating cardiovascular diseases. Here, we established a differentiation strategy that promotes the specification, proliferation and maturation of compact ventricular cardiomyocytes from human pluripotent stem cells (hPSCs). The cardiomyocytes generated under these conditions display the ability to use fatty acids as an energy source, a high mitochondrial mass, well-defined sarcomere structures and enhanced contraction force. These ventricular cells undergo metabolic changes indicative of those associated with heart failure when challenged in vitro with pathological stimuli and were found to generate grafts consisting of more mature cells than those derived from immature cardiomyocytes following transplantation into infarcted rat hearts. hPSC-derived atrial cardiomyocytes also responded to the maturation cues identified in this study, indicating that the approach is broadly applicable to different subtypes of the heart. Collectively, these findings highlight the power of recapitulating key aspects of embryonic and postnatal development for generating therapeutically relevant cell types from hPSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Insuficiência Cardíaca/terapia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Átrios do Coração/citologia , Átrios do Coração/embriologia , Insuficiência Cardíaca/patologia , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/patologia , Humanos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Ratos
20.
Microcirculation ; 17(7): 557-67, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21040121

RESUMO

UNLABELLED: We have demonstrated that MFs isolated from adipose retain angiogenic potential in vitro and form a mature, perfused network when implanted. However, adipose-derived microvessels are rich in provascularizing cells that could uniquely drive neovascularization in adipose-derived MFs implants. OBJECTIVE: Investigate the ability of MFs from a different vascular bed to recapitulate adipose-derived microvessel angiogenesis and network formation and analyze adipose-derived vessel plasticity by assessing whether vessel function could be modulated by astrocyte-like cells. METHODS: MFs were isolated by limited collagenase digestion from rodent brain or adipose and assembled into 3D collagen gels in the presence or absence of GRPs. The resulting neovasculatures that formed following implantation were assessed by measuring 3D vascularity and vessel permeability to small and large molecular tracers. RESULTS: Similar to adipose-derived MFs, brain-derived MFs can sprout and form a perfused neovascular network when implanted. Furthermore, when co-implanted in the constructs, GRPs caused adipose-derived vessels to express the brain endothelial marker glucose transporter-1 and to significantly reduce microvessel permeability. CONCLUSION: Neovascularization involving isolated microvessel elements is independent of the tissue origin and degree of vessel specialization. In addition, adipose-derived vessels have the ability to respond to environmental signals and change vessel characteristics.


Assuntos
Microvasos/crescimento & desenvolvimento , Microvasos/transplante , Neovascularização Fisiológica , Adipócitos/citologia , Adipócitos/transplante , Animais , Astrócitos/citologia , Permeabilidade Capilar , Separação Celular , Córtex Cerebral/irrigação sanguínea , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Epididimo/irrigação sanguínea , Epididimo/citologia , Técnicas In Vitro , Masculino , Microvasos/citologia , Microvasos/fisiologia , Neuroglia/citologia , Neuroglia/transplante , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA