Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 228(9): 1189-1197, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36961853

RESUMO

BACKGROUND: Targeted surveillance allows public health authorities to implement testing and isolation strategies when diagnostic resources are limited, and can be implemented via the consideration of social network topologies. However, it remains unclear how to implement such surveillance and control when network data are unavailable. METHODS: We evaluated the ability of sociodemographic proxies of degree centrality to guide prioritized testing of infected individuals compared to known degree centrality. Proxies were estimated via readily available sociodemographic variables (age, gender, marital status, educational attainment, household size). We simulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics via a susceptible-exposed-infected-recovered individual-based model on 2 contact networks from rural Madagascar to test applicability of these findings to low-resource contexts. RESULTS: Targeted testing using sociodemographic proxies performed similarly to targeted testing using known degree centralities. At low testing capacity, using proxies reduced infection burden by 22%-33% while using 20% fewer tests, compared to random testing. By comparison, using known degree centrality reduced the infection burden by 31%-44% while using 26%-29% fewer tests. CONCLUSIONS: We demonstrate that incorporating social network information into epidemic control strategies is an effective countermeasure to low testing capacity and can be implemented via sociodemographic proxies when social network data are unavailable.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Saúde Pública , Suscetibilidade a Doenças
2.
Proc Biol Sci ; 290(2006): 20231441, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670584

RESUMO

Explaining why some species are disproportionately impacted by the extinction crisis is of critical importance for conservation biology as a science and for proactively protecting species that are likely to become threatened in the future. Using the most current data on threat status, population trends, and threat types for 446 primate species, we advance previous research on the determinants of extinction risk by including a wider array of phenotypic traits as predictors, filling gaps in these trait data using multiple imputation, and investigating the mechanisms that connect organismal traits to extinction risk. Our Bayesian phylogenetically controlled analyses reveal that insular species exhibit higher threat status, while those that are more omnivorous and live in larger groups have lower threat status. The same traits are not linked to risk when repeating our analyses with older IUCN data, which may suggest that the traits influencing species risk are changing as anthropogenic effects continue to transform natural landscapes. We also show that non-insular, larger-bodied, and arboreal species are more susceptible to key threats responsible for primate population declines. Collectively, these results provide new insights to the determinants of primate extinction and identify the mechanisms (i.e. threats) that link traits to extinction risk.


Assuntos
Efeitos Antropogênicos , Primatas , Animais , Teorema de Bayes , Fenótipo
3.
J Anim Ecol ; 92(3): 710-722, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36633380

RESUMO

Ecological associations between hosts and parasites are influenced by host exposure and susceptibility to parasites, and by parasite traits, such as transmission mode. Advances in network analysis allow us to answer questions about the causes and consequences of traits in ecological networks in ways that could not be addressed in the past. We used a network-based framework (exponential random graph models or ERGMs) to investigate the biogeographic, phylogenetic and ecological characteristics of hosts and parasites that affect the probability of interactions among nonhuman primates and their parasites. Parasites included arthropods, bacteria, fungi, protozoa, viruses and helminths. We investigated existing hypotheses, along with new predictors and an expanded host-parasite database that included 213 primate nodes, 763 parasite nodes and 2319 edges among them. Analyses also investigated phylogenetic relatedness, sampling effort and spatial overlap among hosts. In addition to supporting some previous findings, our ERGM approach demonstrated that more threatened hosts had fewer parasites, and notably, that this effect was independent of hosts also having a smaller geographic range. Despite having fewer parasites, threatened host species shared more parasites with other hosts, consistent with loss of specialist parasites and threat arising from generalist parasites that can be maintained in other, non-threatened hosts. Viruses, protozoa and helminths had broader host ranges than bacteria, or fungi, and parasites that infect non-primates had a higher probability of infecting more primate species. The value of the ERGM approach for investigating the processes structing host-parasite networks provided a more complete view on the biogeographic, phylogenetic and ecological traits that influence parasite species richness and parasite sharing among hosts. The results supported some previous analyses and revealed new associations that warrant future research, thus revealing how hosts and parasites interact to form ecological networks.


Assuntos
Artrópodes , Parasitos , Animais , Interações Hospedeiro-Parasita , Filogenia , Primatas/microbiologia
4.
Proc Biol Sci ; 287(1927): 20200397, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32396800

RESUMO

Rates of urbanization are increasing globally, with consequences for the dynamics of parasites and their wildlife hosts. A small subset of mammal species have the dietary and behavioural flexibility to survive in urban settings. The changes that characterize urban ecology-including landscape transformation, modified diets and shifts in community composition-can either increase or decrease susceptibility and exposure to parasites. We used a meta-analytic approach to systematically assess differences in endoparasitism between mammals in urban and non-urban habitats. Parasite prevalence estimates in matched urban and non-urban mammal populations from 33 species were compiled from 46 published studies, and an overall effect of urban habitation on parasitism was derived after controlling for study and parasite genus. Parasite life cycle type and host order were investigated as moderators of the effect sizes. We found that parasites with complex life cycles were less prevalent in urban carnivore and primate populations than in non-urban populations. However, we found no difference in urban and non-urban prevalence for parasites in rodent and marsupial hosts, or differences in prevalence for parasites with simple life cycles in any host taxa. Our findings therefore suggest the disruption of some parasite transmission cycles in the urban ecological community.


Assuntos
Ecossistema , Mamíferos/parasitologia , Animais , Interações Hospedeiro-Parasita , Parasitos
5.
J Hum Evol ; 130: 36-44, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010542

RESUMO

Humans are thought to exhibit an unusual suite of life history traits relative to other primates, with a longer lifespan, later age at first reproduction, and shorter interbirth interval. These assumptions are key components of popular hypotheses about human life history evolution, but they have yet to be investigated phylogenetically. We applied two phylogenetic comparative methods to investigate whether these human life history traits differ from expectations based on other primates: one fits and selects between Brownian and Ornstein-Uhlenbeck models of trait evolution; the other tests for phylogenetic outliers by predicting phenotypic characteristics based on trait covariation and phylogeny for a species of interest. We found that humans have exceptionally short interbirth intervals, long lifespans, and high birth masses. We failed to find evidence that humans have a delayed age at first reproduction relative to body mass or other covariates. Overall, our results support several previous assertions about the uniqueness of human life history characteristics and the importance of cooperative breeding and socioecology in human life history evolution. However, we suggest that several hypotheses about human life history need to be revised in light of our finding that humans do not have a delayed age at first reproduction.


Assuntos
Evolução Biológica , Características de História de Vida , Filogenia , Primatas/fisiologia , Reprodução , Animais , Humanos
6.
Anim Cogn ; 22(5): 697-706, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31055705

RESUMO

Primates spend almost half their lives asleep, yet little is known about how sleep influences their waking cognition. We hypothesized that diurnal and cathemeral lemurs differ in their need for consistent, non-segmented sleep for next-day cognitive function-including long-term memory consolidation, self-control, foraging efficiency, and sociality. Specifically, we expected that strictly diurnal Propithecus is more reliant on uninterrupted sleep for cognitive performance, as compared to four other lemur species that are more flexibly active (i.e., cathemeral). We experimentally inhibited sleep and tested next-day performance in 30 individuals of 5 lemur species over 960 total nights at the Duke Lemur Center in Durham, North Carolina. Each set of pair-housed lemurs experienced a sleep restriction and/or deprivation protocol and was subsequently tested in a variety of fitness-relevant cognitive tasks. Within-subject comparisons of performance on these tasks were made by switching the pair from the experimental sleep inhibited condition to a normal sleep environment, thus ensuring cognitive equivalency among individuals. We validated effectiveness of the protocol via actigraphy and infrared videography. Our results suggest that 'normal' non-disrupted sleep improved memory consolidation for all lemurs. Additionally, on nights of normal sleep, diurnal lemurs performed better in foraging efficiency tasks than cathemeral lemurs. Social behaviors changed in species-specific ways after exposure to experimental conditions, and self-control was not significantly linked with sleep condition. Based on these findings, the links between sleep, learning, and memory consolidation appear to be evolutionarily conserved in primates.


Assuntos
Cognição , Lemur , Sono , Comportamento Social , Animais , Evolução Biológica , Lemur/psicologia , Especificidade da Espécie
7.
Am J Phys Anthropol ; 166(3): 601-612, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29446072

RESUMO

OBJECTIVES: Primates vary in their sleep durations and, remarkably, humans sleep the least per 24-hr period of the 30 primates that have been studied. Using phylogenetic methods that quantitatively situate human phenotypes within a broader primate comparative context, we investigated the evolution of human sleep architecture, focusing on: total sleep duration, rapid eye movement (REM) sleep duration, non-rapid eye movement (NREM) sleep duration, and proportion of sleep in REM. MATERIALS AND METHODS: We used two different Bayesian methods: phylogenetic prediction based on phylogenetic generalized least squares and a multistate Onrstein-Uhlenbeck (OU) evolutionary model of random drift and stabilizing selection. RESULTS: Phylogenetic prediction confirmed that humans sleep less than predicted for a primate of our body mass, predation risk, brain size, foraging needs, sexual selection, and diet. These analyses further revealed that humans pack an unexpectedly higher proportion of REM sleep within a shorter overall sleep duration, and do so by reducing NREM sleep (rather than increasing REM). The OU model generally confirmed these findings, with shifts along the human lineage inferred for TST, NREM, and proportion of REM, but not for REM. DISCUSSION: We propose that the risks and opportunity costs of sleep are responsible for shorter sleep durations in humans, with risks arising from terrestrial sleep involving threats from predators and conspecifics, and opportunity costs because time spent sleeping could be used for learning, creating material objects, and socializing.


Assuntos
Evolução Biológica , Primatas/fisiologia , Sono/fisiologia , Adolescente , Adulto , Animais , Antropologia Física , Teorema de Bayes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sono REM/fisiologia , Adulto Jovem
8.
Am J Phys Anthropol ; 166(3): 578-589, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29989159

RESUMO

OBJECTIVES: Primates spend almost half their lives asleep, yet we know little about how evolution has shaped variation in the duration or intensity of sleep (i.e., sleep regulation) across primate species. Our objective was to test hypotheses related to how sleeping site security influences sleep intensity in different lemur species. METHODS: We used actigraphy and infrared videography to generate sleep measures in 100 individuals (males = 51, females = 49) of seven lemur species (genera: Eulemur, Lemur, Propithecus, and Varecia) at the Duke Lemur Center in Durham, NC. We also generated experimental data using sleep deprivation for 16 individuals. This experiment used a pair-wise design for two sets of paired lemurs from each genus, where the experimental pair experienced a sleep deprivation protocol while the control experienced normal sleeping conditions. We calculated a sleep depth composite metric from weighted z scores of three sleep intensity variables. RESULTS: We found that, relative to cathemeral lemurs, diurnal Propithecus was characterized by the deepest sleep and exhibited the most disruptions to normal sleep-wake regulation when sleep deprived. In contrast, Eulemur mongoz was characterized by significantly lighter sleep than Propithecus, and E. mongoz showed the fewest disruptions to normal sleep-wake regulation when sleep deprived. Security of the sleeping site led to greater sleep depth, with access to outdoor housing linked to lighter sleep in all lemurs that were studied. CONCLUSIONS: We propose that sleeping site security was an essential component of sleep regulation throughout primate evolution. This work suggests that sleeping site security may have been an important factor associated with the evolution of sleep in early and later hominins.


Assuntos
Comportamento Animal/fisiologia , Lemur/fisiologia , Sono de Ondas Lentas/fisiologia , Animais , Antropologia Física , Ritmo Circadiano/fisiologia , Feminino , Masculino
9.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701566

RESUMO

Sleep is essential for survival, yet it also represents a time of extreme vulnerability to predation, hostile conspecifics and environmental dangers. To reduce the risks of sleeping, the sentinel hypothesis proposes that group-living animals share the task of vigilance during sleep, with some individuals sleeping while others are awake. To investigate sentinel-like behaviour in sleeping humans, we investigated activity patterns at night among Hadza hunter-gatherers of Tanzania. Using actigraphy, we discovered that all subjects were simultaneously scored as asleep for only 18 min in total over 20 days of observation, with a median of eight individuals awake throughout the night-time period; thus, one or more individuals was awake (or in light stages of sleep) during 99.8% of sampled epochs between when the first person went to sleep and the last person awoke. We show that this asynchrony in activity levels is produced by chronotype variation, and that chronotype covaries with age. Thus, asynchronous periods of wakefulness provide an opportunity for vigilance when sleeping in groups. We propose that throughout human evolution, sleeping groups composed of mixed age classes provided a form of vigilance. Chronotype variation and human sleep architecture (including nocturnal awakenings) in modern populations may therefore represent a legacy of natural selection acting in the past to reduce the dangers of sleep.


Assuntos
Ritmo Circadiano , Sono , Vigília , Actigrafia , Humanos , Luz , Tanzânia
10.
Ecology ; 98(5): 1476, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28273333

RESUMO

Illuminating the ecological and evolutionary dynamics of parasites is one of the most pressing issues facing modern science, and is critical for basic science, the global economy, and human health. Extremely important to this effort are data on the disease-causing organisms of wild animal hosts (including viruses, bacteria, protozoa, helminths, arthropods, and fungi). Here we present an updated version of the Global Mammal Parasite Database, a database of the parasites of wild ungulates (artiodactyls and perissodactyls), carnivores, and primates, and make it available for download as complete flat files. The updated database has more than 24,000 entries in the main data file alone, representing data from over 2700 literature sources. We include data on sampling method and sample sizes when reported, as well as both "reported" and "corrected" (i.e., standardized) binomials for each host and parasite species. Also included are current higher taxonomies and data on transmission modes used by the majority of species of parasites in the database. In the associated metadata we describe the methods used to identify sources and extract data from the primary literature, how entries were checked for errors, methods used to georeference entries, and how host and parasite taxonomies were standardized across the database. We also provide definitions of the data fields in each of the four files that users can download.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Mamíferos/parasitologia , Parasitos , Animais , Animais Selvagens , Carnívoros , Helmintos , Interações Hospedeiro-Parasita , Humanos
11.
J Anim Ecol ; 86(3): 419-433, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27973681

RESUMO

Social networks provide an established tool to implement heterogeneous contact structures in epidemiological models. Dynamic temporal changes in contact structure and ranging behaviour of wildlife may impact disease dynamics. A consensus has yet to emerge, however, concerning the conditions in which network dynamics impact model outcomes, as compared to static approximations that average contact rates over longer time periods. Furthermore, as many pathogens can be transmitted both environmentally and via close contact, it is important to investigate the relative influence of both transmission routes in real-world populations. Here, we use empirically derived networks from a population of wild primates, Verreaux's sifakas (Propithecus verreauxi), and simulated networks to investigate pathogen spread in dynamic vs. static social networks. First, we constructed a susceptible-exposed-infected-recovered model of Cryptosporidium spread in wild Verreaux's sifakas. We incorporated social and environmental transmission routes and parameterized the model for two different climatic seasons. Second, we used simulated networks and greater variation in epidemiological parameters to investigate the conditions in which dynamic networks produce larger outbreak sizes than static networks. We found that average outbreak size of Cryptosporidium infections in sifakas was larger when the disease was introduced in the dry season than in the wet season, driven by an increase in home range overlap towards the end of the dry season. Regardless of season, dynamic networks always produced larger average outbreak sizes than static networks. Larger outbreaks in dynamic models based on simulated networks occurred especially when the probability of transmission and recovery were low. Variation in tie strength in the dynamic networks also had a major impact on outbreak size, while network modularity had a weaker influence than epidemiological parameters that determine transmission and recovery. Our study adds to emerging evidence that dynamic networks can change predictions of disease dynamics, especially if the disease shows low transmissibility and a long infectious period, and when environmental conditions lead to enhanced between-group contact after an infectious agent has been introduced.


Assuntos
Criptosporidiose/epidemiologia , Criptosporidiose/transmissão , Cryptosporidium/fisiologia , Surtos de Doenças/veterinária , Comportamento Social , Strepsirhini , Animais , Criptosporidiose/parasitologia , Comportamento de Retorno ao Território Vital , Madagáscar/epidemiologia , Modelos Biológicos , Estações do Ano
12.
Am J Phys Anthropol ; 162(3): 573-582, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28063234

RESUMO

OBJECTIVES: Cross-cultural sleep research is critical to deciphering whether modern sleep expression is the product of recent selective pressures, or an example of evolutionary mismatch to ancestral sleep ecology. We worked with the Hadza, an equatorial, hunter-gatherer community in Tanzania, to better understand ancestral sleep patterns and to test hypotheses related to sleep segmentation. METHODS: We used actigraphy to analyze sleep-wake patterns in thirty-three volunteers for a total of 393 days. Linear mixed effects modeling was performed to assess ecological predictors of sleep duration and quality. Additionally, functional linear modeling (FLM) was used to characterize 24-hr time averaged circadian patterns. RESULTS: Compared with post-industrialized western populations, the Hadza were characterized by shorter (6.25 hr), poorer quality sleep (sleep efficiency = 68.9%), yet had stronger circadian rhythms. Sleep duration time was negatively influenced by greater activity, age, light (lux) exposure, and moon phase, and positively influenced by increased day length and mean nighttime temperature. The average daily nap ratio (i.e., the proportion of days where a nap was present) was 0.54 (SE = 0.05), with an average nap duration of 47.5 min (SE = 2.71; n = 139). DISCUSSION: This study showed that circadian rhythms in small-scale foraging populations are more entrained to their ecological environments than Western populations. Additionally, Hadza sleep is characterized as flexible, with a consistent early morning sleep period yet reliance upon opportunistic daytime napping. We propose that plasticity in sleep-wake patterns has been a target of natural selection in human evolution.


Assuntos
População Negra/etnologia , População Negra/estatística & dados numéricos , Ritmo Circadiano/fisiologia , Sono/fisiologia , Actigrafia , Adulto , Antropologia Física , Comportamento Alimentar , Feminino , Humanos , Masculino , Tanzânia , Adulto Jovem
13.
Am J Hum Biol ; 29(4)2017 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-28181718

RESUMO

OBJECTIVES: We studied sleep in a rural population in Madagascar to (i) characterize sleep in an equatorial small-scale agricultural population without electricity, (ii) assess whether sleep is linked to noise levels in a dense population, and (iii) examine the effects of experimentally introduced artificial light on sleep timing. METHODS: Using actigraphy, sleep-wake patterns were analyzed for both daytime napping and nighttime wakefulness in 21 participants for a sum total of 292 days. Functional linear modeling was used to characterize 24-h time-averaged circadian patterns and to investigate the effect of experimentally introduced mobile field lights on sleep timing. We also obtained the first polysomnography (PSG) recordings of sleep in a traditional population. RESULTS: In every measure of sleep duration and quality, the Malagasy population experienced shorter and lower quality sleep when compared to similarly measured postindustrial values. The population slept for a total of 6.5 h per night and napped during 89% of recorded days. We observed a peak in activity after midnight for both sexes on 49% of nights, consistent with segmented sleep. Access to mobile field lights had no statistical effect on nighttime sleep timing. From PSG, we documented relatively short rapid eye movement (14%), poor sleep efficiency (66%), and high wake after sleep onset (162 min). CONCLUSIONS: Sleep in this population is segmented, similar to the "first" sleep and "second" sleep reported in the historical record. Moreover, although average sleep duration and quality were lower than documented in Western populations, circadian rhythms were more stable across days.


Assuntos
Luz/efeitos adversos , Ruído/efeitos adversos , População Rural , Sono , Actigrafia , Adulto , Agricultura , Eletricidade , Feminino , Humanos , Madagáscar , Masculino , Pessoa de Meia-Idade , Polissonografia , Densidade Demográfica , População Rural/estatística & dados numéricos , Vigília , Adulto Jovem
14.
Am J Primatol ; 79(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28257553

RESUMO

Cathemerality, or activity throughout the 24-hr cycle, is rare in primates yet relatively common among lemurs. However, the diverse ecological conditions under which cathemerality is expressed complicates attempts to identify species-typical behavior. For example, Lemur catta and Varecia have historically been described as diurnal, yet recent studies suggest that they might exhibit cathemeral behavior under some conditions. To investigate this variation, we monitored activity patterns among lemurs that are exposed to similar captive environments. Using MotionWatch 8 ® actigraphy data loggers, we studied 88 lemurs across seven species at the Duke Lemur Center (DLC). Six species were members of the family Lemuridae (Eulemur coronatus, E. flavifrons, E. mongoz, L. catta, V. rubra, V. variegata), while a seventh was strictly diurnal and included as an out-group (Propithecus coquereli). For each 24-hr cycle (N = 503), we generated two estimates of cathemerality: mean night (MN) activity and day/night (DN) activity ratio (day and night cutoffs were based on astronomical twilights). As expected, P. coquereli engaged in the least amount of nocturnal activity according to both measures; their activity was also outside the 95% confidence intervals of all three cathemeral Eulemur species, which exhibited the greatest evidence of cathemerality. By these estimates, Varecia activity was most similar to Eulemur and exhibited substantial deviations from P. coquereli (ß (MN) = 0.22 ± SE 0.12; ß (DN) = -0.21 ± SE 0.12). L. catta activity patterns also deviated from P. coquereli (ß (MN) = 0.12 ± SE 0.11; ß (DN) = -0.15 ± SE 0.12) but to a lesser degree than either Varecia or Eulemur. Overall, L. catta displayed an intermediate activity pattern between Eulemur and P. coquereli, which is somewhat consistent with wild studies. Regarding Varecia, although additional observations in more diverse wild habitats are needed, our findings support the existence of cathemeral behavior in this genus.


Assuntos
Comportamento Animal , Ritmo Circadiano , Lemur , Animais , Ecossistema , Meio Ambiente , Lemuridae , Strepsirhini
15.
Proc Natl Acad Sci U S A ; 111(20): E2140-8, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24753565

RESUMO

Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.


Assuntos
Encéfalo/fisiologia , Cognição , Primatas/fisiologia , Animais , Evolução Biológica , Encéfalo/anatomia & histologia , Dieta , Humanos , Aprendizagem , Funções Verossimilhança , Modelos Estatísticos , Tamanho do Órgão , Filogenia , Primatas/anatomia & histologia , Resolução de Problemas , Seleção Genética , Comportamento Social , Especificidade da Espécie
16.
Ecol Lett ; 19(9): 1159-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353433

RESUMO

Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune investment among host species, and more generally what drives global patterns of parasite diversity and distribution? Here we consider how the perspectives and tools of macroecology, a field that investigates patterns and processes at broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global infectious disease ecology. In particular, emerging approaches are providing new insights about scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and infection risk. Ultimately, macroecology is establishing a framework to more accurately predict global patterns of infectious disease distribution and emergence.


Assuntos
Doenças Transmissíveis , Interações Hospedeiro-Patógeno , Biodiversidade , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/etiologia , Doenças Transmissíveis/transmissão , Doenças Transmissíveis/veterinária , Ecologia/métodos
17.
J Hum Evol ; 94: 126-33, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27178464

RESUMO

Phylogenetic comparative methods have become standard for investigating evolutionary hypotheses, including in studies of human evolution. While these methods account for the non-independence of trait data due to phylogeny, they often fail to consider intraspecific variation, which may lead to biased or erroneous results. We assessed the degree to which intraspecific variation impacts the results of comparative analyses by investigating the "social brain" hypothesis, which has provided a framework for explaining complex cognition and large brains in humans. This hypothesis suggests that group life imposes a cognitive challenge, with species living in larger social groups having comparably larger neocortex ratios than those living in smaller groups. Primates, however, vary considerably in group size within species, a fact that has been ignored in previous analyses. When within-species variation in group size is high, the common practice of using a mean value to represent the species may be inappropriate. We conducted regression and resampling analyses to ascertain whether the relationship between neocortex ratio and group size across primate species persists after controlling for within-species variation in group size. We found that in a sample of 23 primates, 70% of the variation in group size was due to between-species variation. Controlling for within-species variation in group size did not affect the results of phylogenetic analyses, which continued to show a positive relationship between neocortex ratio and group size. Analyses restricted to non-monogamous primates revealed considerable intraspecific variation in group size, but the positive association between neocortex ratio and group size remained even after controlling for within-species variation in group size. Our findings suggest that the relationship between neocortex size and group size in primates is robust. In addition, our methods and associated computer code provide a way to assess and account for intraspecific variation in other comparative analyses of primate evolution.


Assuntos
Evolução Biológica , Encéfalo/fisiologia , Haplorrinos/fisiologia , Comportamento Social , Animais , Modelos Biológicos
18.
Evol Anthropol ; 25(5): 232-238, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27753217

RESUMO

Recent decades have seen rapid development of new analytical methods to investigate patterns of interspecific variation. Yet these cutting-edge statistical analyses often rely on data of questionable origin, varying accuracy, and weak comparability, which seem to have reduced the reproducibility of studies. It is time to improve the transparency of comparative data while also making these improved data more widely available. We, the authors, met to discuss how transparency, usability, and reproducibility of comparative data can best be achieved. We propose four guiding principles: 1) data identification with explicit operational definitions and complete descriptions of methods; 2) inclusion of metadata that capture key characteristics of the data, such as sample size, geographic coordinates, and nutrient availability (for example, captive versus wild animals); 3) documentation of the original reference for each datum; and 4) facilitation of effective interactions with the data via user friendly and transparent interfaces. We urge reviewers, editors, publishers, database developers and users, funding agencies, researchers publishing their primary data, and those performing comparative analyses to embrace these standards to increase the transparency, usability, and reproducibility of comparative studies.


Assuntos
Bases de Dados Factuais/normas , Metadados/normas , Pesquisa/normas , Animais , Antropologia Física , Interpretação Estatística de Dados , Primatas , Reprodutibilidade dos Testes
19.
Proc Natl Acad Sci U S A ; 110(19): 7738-41, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610389

RESUMO

Most emerging infectious diseases (EIDs) in humans have arisen from animals. Identifying high-risk hosts is therefore vital for the control and surveillance of these diseases. Viewing hosts as connected through the parasites they share, we use network tools to investigate predictors of parasitism and sources of future EIDs. We generated host-parasite networks that link hosts when they share a parasite, using nonhuman primates as a model system because--owing to their phylogenetic proximity and ecological overlap with humans--they are an important source of EIDs to humans. We then tested whether centrality in the network of host species--a measurement of the importance of a given node (i.e., host species) in the network--is associated with that host serving as a potential EID source. We found that centrality covaries with key predictors of parasitism, such as population density and geographic range size. Importantly, we also found that primate species having higher values of centrality in the primate-parasite network harbored more parasites identified as EIDs in humans and had parasite communities more similar to those found in humans. These relationships were robust to the use of different centrality metrics and to multiple ways of controlling for variation in how well each species has been studied (i.e., sampling effort). Centrality may therefore estimate the role of a host as a source of EIDs to humans in other multispecific host-parasite networks.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Parasitárias em Animais/transmissão , Primatas/parasitologia , Algoritmos , Animais , Biodiversidade , Controle de Doenças Transmissíveis , Doenças Transmissíveis Emergentes/genética , Bases de Dados Factuais , Geografia , Humanos , Modelos Biológicos , Análise Multivariada , Parasitos , Densidade Demográfica , Primatas/genética
20.
Proc Biol Sci ; 282(1799): 20140862, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25473005

RESUMO

Culturally transmitted traits are observed in a wide array of animal species, yet we understand little about the costs of the behavioural patterns that underlie culture, such as innovation and social learning. We propose that infectious diseases are a significant cost associated with cultural transmission. We investigated two hypotheses that may explain such a connection: that social learning and exploratory behaviours (specifically, innovation and extractive foraging) either compensate for existing infection or increase exposure to infectious agents. We used Bayesian comparative methods, controlling for sampling effort, body mass, group size, geographical range size, terrestriality, latitude and phylogenetic uncertainty. Across 127 primate species, we found a positive association between pathogen richness and rates of innovation, extractive foraging and social learning. This relationship was driven by two independent phenomena: socially contagious diseases were positively associated with rates of social learning, and environmentally transmitted diseases were positively associated with rates of exploration. Because higher pathogen burdens can contribute to morbidity and mortality, we propose that parasitism is a significant cost associated with the behavioural patterns that underpin culture, and that increased pathogen exposure is likely to have played an important role in the evolution of culture in both non-human primates and humans.


Assuntos
Comportamento Animal , Evolução Cultural , Primatas/fisiologia , Comportamento Social , Animais , Teorema de Bayes , Evolução Biológica , Doenças Transmissíveis/parasitologia , Transmissão de Doença Infecciosa , Meio Ambiente , Aprendizagem , Filogenia , Primatas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA