Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 133(3): 462-74, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18455987

RESUMO

Calcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) couples increases in cellular Ca2+ to fundamental responses in excitable cells. CaMKII was identified over 20 years ago by activation dependence on Ca2+/CaM, but recent evidence shows that CaMKII activity is also enhanced by pro-oxidant conditions. Here we show that oxidation of paired regulatory domain methionine residues sustains CaMKII activity in the absence of Ca2+/CaM. CaMKII is activated by angiotensin II (AngII)-induced oxidation, leading to apoptosis in cardiomyocytes both in vitro and in vivo. CaMKII oxidation is reversed by methionine sulfoxide reductase A (MsrA), and MsrA-/- mice show exaggerated CaMKII oxidation and myocardial apoptosis, impaired cardiac function, and increased mortality after myocardial infarction. Our data demonstrate a dynamic mechanism for CaMKII activation by oxidation and highlight the critical importance of oxidation-dependent CaMKII activation to AngII and ischemic myocardial apoptosis.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiopatias/metabolismo , Metionina/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Angiotensina II , Animais , Apoptose , Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calmodulina/metabolismo , Metionina Sulfóxido Redutases , Camundongos , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/citologia , Oxirredução , Oxirredutases/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Proteins ; 79(3): 765-86, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21287611

RESUMO

Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca(2+)-calmodulin-dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T-cell activation and cardiac hypertrophy in humans. Calcium binding to CaN(B) (the regulatory subunit) triggers conformational change in CaN(A) (the catalytic subunit). Two isoforms of CaN(A) (α, ß) are both abundant in brain and heart and activated by calcium-saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca(2+))4-CaM(1-148) bound to ßCaNp, a peptide representing its CaM-binding domain, indicated a 1:1 stoichiometry. ßCaNp binding to CaM increased the affinity of calcium for the N- and C-domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium-saturated CaM domains dissociating from ßCaNp were ∼1 µM. A limiting K(d) ≤ 1 nM was measured directly for full-length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. ßCaNp binding to ¹5N-(Ca(2+))4-CaM(1-148) monitored by ¹5N/¹HN HSQC NMR showed that association perturbed the N-domain of CaM more than its C-domain. NMR resonance assignments of CaM and ßCaNp, and interpretation of intermolecular NOEs observed in the ¹³C-edited and ¹²C-¹4N-filtered 3D NOESY spectrum indicated anti-parallel binding. The sole aromatic residue (Phe) located near the ßCaNp C-terminus was in close contact with several residues of the N-domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of ßCaN.


Assuntos
Calcineurina/química , Calmodulina/química , Termodinâmica , Sequência de Aminoácidos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
3.
Proteins ; 78(10): 2265-82, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20544963

RESUMO

Trifluoperazine (TFP; Stelazine) is an antagonist of calmodulin (CaM), an essential regulator of calcium-dependent signal transduction. Reports differ regarding whether, or where, TFP binds to apo CaM. Three crystallographic structures (1CTR, 1A29, and 1LIN) show TFP bound to (Ca(2+))(4)-CaM in ratios of 1, 2, or 4 TFP per CaM. In all of these, CaM domains adopt the "open" conformation seen in CaM-kinase complexes having increased calcium affinity. Most reports suggest TFP also increases calcium affinity of CaM. To compare TFP binding to apo CaM and (Ca(2+))(4)-CaM and explore differential effects on the N- and C-domains of CaM, stoichiometric TFP titrations of CaM were monitored by (15)N-HSQC NMR. Two TFP bound to apo CaM, whereas four bound to (Ca(2+))(4)-CaM. In both cases, the preferred site was in the C-domain. During the titrations, biphasic responses for some resonances suggested intersite interactions. TFP-binding sites in apo CaM appeared distinct from those in (Ca(2+))(4)-CaM. In equilibrium calcium titrations at defined ratios of TFP:CaM, TFP reduced calcium affinity at most levels tested; this is similar to the effect of many IQ-motifs on CaM. However, at the highest level tested, TFP raised the calcium affinity of the N-domain of CaM. A model of conformational switching is proposed to explain how TFP can exert opposing allosteric effects on calcium affinity by binding to different sites in the "closed," "semi-open," and "open" domains of CaM. In physiological processes, apo CaM, as well as (Ca(2+))(4)-CaM, needs to be considered a potential target of drug action.


Assuntos
Antipsicóticos/química , Cálcio/química , Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Trifluoperazina/química , Trifluoperazina/metabolismo , Animais , Antipsicóticos/metabolismo , Sítios de Ligação/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/antagonistas & inibidores , Calmodulina/sangue , Calmodulina/genética , Biologia Computacional , Bases de Dados de Proteínas , Cinética , Ligantes , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Concentração Osmolar , Paramecium/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
4.
Biomol NMR Assign ; 11(2): 275-280, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815458

RESUMO

Calcineurin (CaN) is a heterodimeric and highly conserved serine/threonine phosphatase (PP2B) that plays a critical role in coupling calcium signals to physiological processes including embryonic cardiac development, NF-AT-regulated gene expression in immune responses, and apoptosis. The catalytic subunit (CaNA) has three isoforms (α, ß, and γ,) in humans and seven isoforms in Paramecium. In all eukaryotes, the EF-hand protein calmodulin (CaM) regulates CaN activity in a calcium-dependent manner. The N- and C-domains of CaM (CaMN and CaMC) recognize a CaM-binding domain (CaMBD) within an intrinsically disordered region of CaNA that precedes the auto-inhibitory domain (AID) of CaNA. Here we present nearly complete 1H, 13C, and 15N resonance assignments of (Ca2+)4-CaM bound to a peptide containing the CaMBD sequence in the beta isoform of CaNA (ßCaNA-CaMBDp). Its secondary structure elements predicted from the assigned chemical shifts were in good agreement with those observed in the high-resolution structures of (Ca2+)4-CaM bound to CaMBDs of multiple enzymes. Based on the reported literature, the CaMBD of the α isoform of CaNA can bind to CaM in two opposing orientations which may influence the regulatory function of CaM. Because a high resolution structure of (Ca2+)4-CaM bound to ßCaNA-CaMBDp has not been reported, our studies serve as a starting point for determining the solution structure of this complex. This will demonstrate the preferred orientation of (Ca2+)4-CaM on the CaMBD as well as the orientations of CaMN and CaMC relative to each other and to the AID of ßCaNA.


Assuntos
Calcineurina/química , Cálcio/metabolismo , Calmodulina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Ligação Proteica
6.
Methods Enzymol ; 466: 503-26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21609874

RESUMO

Calmodulin (CaM) is a small (148 amino acid), ubiquitously expressed eukaryotic protein essential for Ca(2+) regulation and signaling. This highly acidic polypeptide (pI<4) has two homologous domains (N and C), each consisting of two EF-hand Ca(2+)-binding sites. Despite significant homology, the domains have intrinsic differences in their Ca(2+)-binding properties and separable roles in regulating physiological targets such as kinases and ion channels. In mammalian full-length CaM, sites III and IV in the C-domain bind Ca(2+) cooperatively with ~10-fold higher affinity than sites I and II in the N-domain. However, the difference is only twofold when CaM is severed at residue 75, indicating that anticooperative interactions occur in full-length CaM. The Ca(2+)-binding properties of sites I and II are regulated by several factors including the interplay of interdomain linker residues far from the binding sites. Our prior thermodynamic studies showed that these residues inhibit thermal denaturation and decrease calcium affinity. Based on high-resolution structures and NMR spectra, there appear to be interactions between charged residues in the sequence 75-80 and those near the amino terminus of CaM. To explore electrostatic contributions to interdomain interactions in CaM, KCl was used to perturb the Ca(2+)-binding affinity, thermal stability, and hydrodynamic size of a nested set of recombinant mammalian CaM (rCaM) fragments terminating at residues 75, 80, 85, or 90. Potassium chloride is known to decrease Ca(2+)-binding affinity of full-length CaM. It may act directly by competition with acidic side chains that chelate Ca(2+) in the binding sites, and indirectly elsewhere in the molecule by changing tertiary constraints and conformation. In all proteins studied, KCl decreased Ca(2+)-affinity, decreased Stokes radius, and increased thermal stability, but not monotonically. Crystallographic structures of Ca(2+)-saturated rCaM(1-75) (3B32.pdb) and rCaM(1-90) (3IFK.pdb) were determined, offering cautionary notes about the effect of packing interactions on flexible linkers. This chapter describes an array of methods for characterizing system-specific thermodynamic properties that in concert govern structure and function.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Calmodulina/genética , Cristalografia por Raios X/métodos , Fluorometria/métodos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
7.
J Agric Food Chem ; 56(19): 8998-9005, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18795784

RESUMO

Cashew nut seeds were subjected to processing including autoclaving (121 degrees C for 5, 10, 20, and 30 min), blanching (100 degrees C for 1, 4, 7, and 10 min), microwave heating (1 and 2 min each at 500 and 1000 W), dry roasting (140 degrees C for 20 and 30 min; 170 degrees C for 15 and 20 min; and 200 degrees C for 10 and 15 min), gamma-irradiation (1, 5, 10, and 25 kGy), and pH (1, 3, 5, 7, 9, 11, and 13). Proteins from unprocessed and processed cashew nut seeds were probed for stability using anti-Ana o 2 rabbit polyclonal antibodies and mouse monoclonal antibodies directed against Ana o 1, Ana o 2, and Ana o 3 as detection agents. Results indicate that Ana o 1, Ana o 2, and Ana o 3 are stable regardless of the processing method to which the nut seeds are subjected.


Assuntos
Anacardium/química , Manipulação de Alimentos , Proteínas de Plantas/imunologia , Sementes/química , Animais , Anticorpos , Anticorpos Monoclonais , Estabilidade de Medicamentos , Irradiação de Alimentos , Raios gama , Temperatura Alta , Camundongos , Micro-Ondas , Hipersensibilidade a Noz/imunologia , Proteínas de Plantas/química , Pressão , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA