RESUMO
Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.
Assuntos
Epigênese Genética , Interferon Tipo I , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Células B de Memória , Animais , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/genética , Memória Imunológica/imunologia , Doença Crônica , Subpopulações de Linfócitos B/imunologia , Análise de Célula ÚnicaRESUMO
The sensing of microbial genetic material by leukocytes often elicits beneficial pro-inflammatory cytokines, but dysregulated responses can cause severe pathogenesis. Genome-wide association studies have linked the gene encoding phospholipase D3 (PLD3) to Alzheimer's disease and have linked PLD4 to rheumatoid arthritis and systemic sclerosis. PLD3 and PLD4 are endolysosomal proteins whose functions are obscure. Here, PLD4-deficient mice were found to have an inflammatory disease, marked by elevated levels of interferon-γ (IFN-γ) and splenomegaly. These phenotypes were traced to altered responsiveness of PLD4-deficient dendritic cells to ligands of the single-stranded DNA sensor TLR9. Macrophages from PLD3-deficient mice also had exaggerated TLR9 responses. Although PLD4 and PLD3 were presumed to be phospholipases, we found that they are 5' exonucleases, probably identical to spleen phosphodiesterase, that break down TLR9 ligands. Mice deficient in both PLD3 and PLD4 developed lethal liver inflammation in early life, which indicates that both enzymes are needed to regulate inflammatory cytokine responses via the degradation of nucleic acids.
Assuntos
Células Dendríticas/fisiologia , Endossomos/metabolismo , Exonucleases/metabolismo , Hepatite/genética , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Fosfolipase D/metabolismo , Doença de Alzheimer/genética , Animais , Artrite Reumatoide/genética , DNA de Cadeia Simples/imunologia , Exonucleases/genética , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase D/genética , Escleroderma Sistêmico/genética , Transdução de Sinais , Receptor Toll-Like 9/metabolismoRESUMO
Despite advances in single-cell multi-omics, a single stem or progenitor cell can only be tested once. We developed clonal multi-omics, in which daughters of a clone act as surrogates of the founder, thereby allowing multiple independent assays per clone. With SIS-seq, clonal siblings in parallel "sister" assays are examined either for gene expression by RNA sequencing (RNA-seq) or for fate in culture. We identified, and then validated using CRISPR, genes that controlled fate bias for different dendritic cell (DC) subtypes. This included Bcor as a suppressor of plasmacytoid DC (pDC) and conventional DC type 2 (cDC2) numbers during Flt3 ligand-mediated emergency DC development. We then developed SIS-skew to examine development of wild-type and Bcor-deficient siblings of the same clone in parallel. We found Bcor restricted clonal expansion, especially for cDC2s, and suppressed clonal fate potential, especially for pDCs. Therefore, SIS-seq and SIS-skew can reveal the molecular and cellular mechanisms governing clonal fate.
Assuntos
Células Dendríticas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Feminino , Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismoRESUMO
cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.
Assuntos
Imunidade Inata , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Macrófagos/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/genéticaRESUMO
Double-stranded RNA (dsRNA) is a common by-product of viral infections and acts as a potent trigger of antiviral immunity. In the nematode C. elegans, sid-1 encodes a dsRNA transporter that is highly conserved throughout animal evolution, but the physiological role of SID-1 and its orthologs remains unclear. Here, we show that the mammalian SID-1 ortholog, SIDT2, is required to transport internalized extracellular dsRNA from endocytic compartments into the cytoplasm for immune activation. Sidt2-deficient mice exposed to extracellular dsRNA, encephalomyocarditis virus (EMCV), and herpes simplex virus 1 (HSV-1) show impaired production of antiviral cytokines and-in the case of EMCV and HSV-1-reduced survival. Thus, SIDT2 has retained the dsRNA transport activity of its C. elegans ortholog, and this transport is important for antiviral immunity.
Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Transporte de RNA , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , Animais , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/imunologia , Linhagem Celular , Citoplasma , Proteína DEAD-box 58/metabolismo , Modelos Animais de Doenças , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/imunologia , Endossomos/metabolismo , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Herpes Simples/genética , Herpes Simples/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas de Transporte de Nucleotídeos , Ligação Proteica , Transporte Proteico , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismoRESUMO
CD8 virtual memory T (TVM) cells are Ag-naive CD8 T cells that have undergone partial differentiation in response to common γ-chain cytokines, particularly IL-15 and IL-4. TVM cells from young individuals are highly proliferative in response to TCR and cytokine stimulation but, with age, they lose TCR-mediated proliferative capacity and exhibit hallmarks of senescence. Helminth infection can drive an increase in TVM cells, which is associated with improved pathogen clearance during subsequent infectious challenge in young mice. Given the cytokine-dependent profile of TVM cells and their age-associated dysfunction, we traced proliferative and functional changes in TVM cells, compared with true naive CD8 T cells, after helminth infection of young and aged C57BL/6 mice. We show that IL-15 is essential for the helminth-induced increase in TVM cells, which is driven only by proliferation of existing TVM cells, with negligible contribution from true naive cell differentiation. Additionally, TVM cells showed the greatest proliferation in response to helminth infection and IL-15 compared with other CD8 T cells. Furthermore, TVM cells from aged mice did not undergo expansion after helminth infection due to both TVM cell-intrinsic and -extrinsic changes associated with aging.
Assuntos
Helmintíase , Interleucina-15 , Animais , Camundongos , Envelhecimento/imunologia , Linfócitos T CD8-Positivos/parasitologia , Citocinas , Helmintíase/imunologia , Helmintíase/metabolismo , Helmintos/patogenicidade , Memória Imunológica , Interleucina-15/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos TRESUMO
DEC-205 is a cell-surface receptor that transports bound ligands into the endocytic pathway for degradation or release within lysosomal endosomes. This receptor has been reported to bind a number of ligands, including keratin, and some classes of CpG oligodeoxynucleotides (ODN). In this study, we explore in detail the requirements for binding ODNs, revealing that DEC-205 efficiently binds single-stranded, phosphorothioated ODN of ≥14 bases, with preference for the DNA base thymidine, but with no requirement for a CpG motif. DEC-205 fails to bind double-stranded phosphodiester ODN, and thus does not bind the natural type of DNA found in mammals. The ODN binding preferences of DEC-205 result in strong binding of B class ODN, moderate binding to C class ODN, minimal binding to P class ODN, and no binding to A class ODN. Consistent with DEC-205 binding capacity, induction of serum IL-12p70 or activation of B cells by each class of ODN correlated with DEC-205 dependence in mice. Thus, the greater the DEC-205 binding capacity, the greater the dependence on DEC-205 for optimal responses. Finally, by covalently linking a B class ODN that efficiently binds DEC-205, to a P class ODN that shows poor binding, we improved DEC-205 binding and increased adjuvancy of the hybrid ODN. The hybrid ODN efficiently enhanced induction of effector CD8 T cells in a DEC-205-dependent manner. Furthermore, the hybrid ODN induced robust memory responses, and was particularly effective at promoting the development of liver tissue-resident memory T cells.
Assuntos
Adjuvantes Imunológicos , Oligodesoxirribonucleotídeos , Animais , Células Dendríticas , Interleucina-12 , Fígado , CamundongosRESUMO
OBJECTIVE: Identifying risk factors that contribute to the development of anorexia nervosa (AN) is critical for the implementation of early intervention strategies. Anxiety, obsessive-compulsive behavior, and immune dysfunction may be involved in the development of AN; however, their direct influence on susceptibility to the condition remains unclear. Here, we used the activity-based anorexia (ABA) model to examine whether activity, anxiety-like behavior, compulsive behavior, and circulating immune markers predict the subsequent development of pathological weight loss. METHOD: Female Sprague-Dawley rats (n = 44) underwent behavioral testing before exposure to ABA conditions after which they were separated into susceptible and resistant subpopulations. Blood was sampled before behavioral testing and after recovery from ABA to screen for proinflammatory cytokines. RESULTS: Rats that were vulnerable to pathological weight loss differed significantly from resistant rats on all key ABA parameters. While the primary measures of anxiety-like or compulsive behavior were not shown to predict vulnerability to ABA, increased locomotion and anxiety-like behavior were both associated with the extent of weight loss in susceptible but not resistant animals. Moreover, the change in expression of proinflammatory markers IL-4 and IL-6 evoked by ABA was associated with discrete vulnerability factors. Intriguingly, behavior related to risk assessment was shown to predict vulnerability to ABA. DISCUSSION: We did not find undisputable behavioral or immune predictors of susceptibility to pathological weight loss in the ABA rat model. Future research should examine the role of cognition in the development of ABA, dysfunction of which may represent an endophenotype linking anorectic, anxiety-like and compulsive behavior. PUBLIC SIGNIFICANCE: Anorexia nervosa (AN) has among the highest mortality rates of all psychiatric disorders and treatment options remain limited in their efficacy. Understanding what types of risk factors contribute to the development of AN is essential for implementing early intervention strategies. This study describes how some of the most common psychological features of AN could be used to predict susceptibility to pathological weight loss in a well-established animal model.
Assuntos
Anorexia Nervosa , Anorexia , Adolescente , Animais , Anorexia/patologia , Anorexia Nervosa/diagnóstico , Biomarcadores , Modelos Animais de Doenças , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Redução de Peso/fisiologiaRESUMO
Initiation of adaptive immunity to particulate antigens in lymph nodes largely depends on their presentation by migratory dendritic cells (DCs). DC subsets differ in their capacity to induce specific types of immunity, allowing subset-specific DC-targeting to influence vaccination and therapy outcomes. Faithful drug design, however, requires exact understanding of subset-specific versus global activation mechanisms. cDC1, the subset of DCs that excel in supporting immunity toward viruses, intracellular bacteria, and tumors, express uniquely high levels of the pattern recognition receptor TLR3. Using various murine genetic models, we show here that both, the cDC1 and cDC2 subsets of cDCs are activated and migrate equally well in response to TLR3 stimulation in a cell extrinsic and TNF-α dependent manner, but that cDC1 show a unique requirement for type I interferon signaling. Our findings reveal common and differing pathways regulating DC subset migration, offering important insights for the design of DC-based vaccination and therapy approaches.
Assuntos
Células Dendríticas/imunologia , Intestinos/imunologia , Receptor 3 Toll-Like/metabolismo , Animais , Vacinas Anticâncer , Movimento Celular , Células Cultivadas , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 3 Toll-Like/imunologiaRESUMO
Dendritic cells (DC) are professional antigen presenting cells comprising a variety of subsets, as either resident or migrating cells, in lymphoid and non-lymphoid organs. In the steady state DC continually process and present antigens on MHCI and MHCII, processes that are highly upregulated upon activation. By expressing differential sets of pattern recognition receptors different DC subsets are able to respond to a range of pathogenic and danger stimuli, enabling functional specialisation of the DC. The knowledge of functional specialisation of DC subsets is key to efficient priming of T cells, to the design of effective vaccine adjuvants and to understanding the role of different DC in health and disease. This review outlines mouse and human steady state DC subsets and key attributes that define their distinct functions.
Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/citologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , HumanosRESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) presents an increasing threat to public health, with antimicrobial resistance on the rise and infections endemic in the hospital setting. Despite a global research effort to understand and combat antimicrobial resistance, less work has focused on understanding the nuances in the immunopathogenesis of clinical strains. In particular, there is a surprising gap of knowledge in the literature pertaining to how clinical strains are recognized by dendritic cells (DCs). Here, we show that the activation of DCs is compromised in response to MRSA strains resistant to the last-line antibiotic daptomycin. We found a significant reduction in the secretion of proinflammatory cytokines including tumor necrosis factor-α, interleukin-6, regulated upon activation, normal T cell expressed, and secreted and macrophage inflammatory protein-1ß, as well as decreased expression of CD80 by DCs responding to daptomycin-resistant MRSA. We further demonstrate that this phenotype is coincident with the acquisition of specific point mutations in the cardiolipin synthase gene cls2, and, partly, in the bifunctional lysylphosphatidylglycerol flippase/synthetase gene mprF, which are genes that are often mutated in clinical daptomycin-resistant strains. Therefore, throughout infection and antibiotic therapy, MRSA has the capacity to not only develop further antibiotic resistance, but also develop resistance to immunological recognition by DCs, because of single amino acid point mutations occurring under the selective pressures of both host immunity and antibiotic therapy. Understanding the diversity of clinical MRSA isolates and the nuances in their immune recognition will have important implications for future therapeutics and the treatment of these infections.
Assuntos
Daptomicina , Células Dendríticas/imunologia , Farmacorresistência Bacteriana/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Animais , Antígeno B7-1/imunologia , Citocinas/imunologia , Regulação da Expressão Gênica , Humanos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , CamundongosRESUMO
The NZB/W F1 (F1) mice develop severe disease that is similar to human systemic lupus erythematosus. By contrast, each parent strain, NZB or NZW, has limited autoimmunity, suggesting traits of both strains contribute to pathogenesis. Although many of the contributing genes have been identified, the contributing cellular abnormality associated with each parent strain remains unresolved. Given that plasmacytoid dendritic cells (pDCs) are key to the pathogenesis of lupus, we investigated the properties of pDCs from NZB and NZW mice. We found that NZB mouse had higher numbers of pDCs, with much of the increase being contributed by a more abundant CD8+ pDC subset. This was associated with prolonged survival and stronger proliferation of CD4+ T cells. By contrast, NZW pDCs had heightened capacity to produce interferon-α (IFNα) and IFNλ, and promoted stronger B-cell proliferation upon CpG stimulation. Thus, our data reveal the different functional and numerical characteristics of pDCs from NZW and NZB mouse.
Assuntos
Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Animais , Linfócitos B/imunologia , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Sobrevivência Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Fatores de Transcrição Forkhead/metabolismo , Interferon-alfa/metabolismo , Interferons/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Camundongos Knockout , Camundongos Transgênicos , Oligodesoxirribonucleotídeos/farmacologiaRESUMO
The importance of conventional dendritic cells (cDCs) in the processing and presentation of antigen is well established, but the contribution of plasmacytoid dendritic cells (pDCs) to these processes, and hence to T cell immunity, remains unclear. Here we showed that unlike cDCs, pDCs continued to synthesize major histocompatibility complex (MHC) class II molecules and the MHC class II ubiquitin ligase MARCH1 long after activation. Sustained MHC class II-peptide complex formation, ubiquitination and turnover rendered pDCs inefficient in the presentation of exogenous antigens but enabled pDCs to continuously present endogenous viral antigens in their activated state. As the antigen-presenting abilities of cDCs and pDCs are fundamentally distinct, these two cell types may activate largely nonoverlapping repertoires of CD4(+) T cells.
Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Ubiquitinação , Animais , Antígenos Virais/imunologia , Antígenos CD11/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genéticaRESUMO
Dendritic cell (DC) populations consist of multiple subsets that are essential orchestrators of the immune system. Technological limitations have so far prevented systems-wide accurate proteome comparison of rare cell populations in vivo. Here, we used high-resolution mass spectrometry-based proteomics, combined with label-free quantitation algorithms, to determine the proteome of mouse splenic conventional and plasmacytoid DC subsets to a depth of 5,780 and 6,664 proteins, respectively. We found mutually exclusive expression of pattern recognition pathways not previously known to be different among conventional DC subsets. Our experiments assigned key viral recognition functions to be exclusively expressed in CD4(+) and double-negative DCs. The CD8alpha(+) DCs largely lack the receptors required to sense certain viruses in the cytoplasm. By avoiding activation via cytoplasmic receptors, including retinoic acid-inducible gene I, CD8alpha(+) DCs likely gain a window of opportunity to process and present viral antigens before activation-induced shutdown of antigen presentation pathways occurs.
Assuntos
RNA Helicases DEAD-box/biossíntese , Células Dendríticas/metabolismo , Proteômica/métodos , Infecções por Respirovirus/imunologia , Vírus Sendai/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Separação Celular , Células Cultivadas , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Citometria de Fluxo , Interações Hospedeiro-Patógeno , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteômica/instrumentação , Vírus Sendai/patogenicidadeRESUMO
Nucleotide-binding and oligomerization domain (NOD)-like receptors NOD1 and NOD2 are cytosolic innate immune receptors that recognize microbial peptidoglycans. Although studies have addressed the role of NOD proteins in innate immune responses, little attention has been given to their impact on the developing adaptive immune system. We have assessed the roles of NOD1 and NOD2 deficiency on T cell development in mice. Our results demonstrate that NOD1 and NOD2 promote the positive selection/maturation of CD8 single-positive thymocytes in a thymocyte-intrinsic manner. TCR-mediated ERK phosphorylation is significantly reduced in the absence of NOD proteins, but receptor-interacting protein 2 is not involved in CD8 single-positive thymocyte selection or ERK signaling. Commensal bacteria-free animals have thymocyte maturation defects, and exogenous NOD ligands can enhance thymocyte maturation in culture. These results raise the intriguing possibility that abnormal lymphocyte responses observed in NOD-dependent inflammatory diseases are not driven solely by microbial signals in the gut, but may also involve intrinsic lymphocyte defects resulting from impaired CD8 T cell thymic development.
Assuntos
Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Timócitos/citologia , Animais , Linfócitos T CD8-Positivos/imunologia , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Timócitos/imunologia , Timo/citologia , Timo/imunologiaRESUMO
The role of specific members of the NF-κB family of transcription factors in CD8 T-cell selection and development is largely unknown. Here, we show that mice lacking NF-κB1 develop a unique population of conventional CD8 single-positive (SP) thymocytes with memory T cell-like properties that populate peripheral immune organs. Development of this memory-like population is not due to PLZF(+) thymocytes and instead coincides with changes in CD8 T-cell selection. These include a reduction in the efficiency of negative selection and a dependence on MHC class Ia or Ib expressed by haematopoietic cells. These findings indicate that NF-κB1 regulates multiple events in the thymus that collectively inhibit the excess development of CD8(+) thymocytes with memory cell characteristics.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/fisiologia , NF-kappa B/fisiologia , Timo/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imunofenotipagem , Interleucina-4/biossíntese , NF-kappa B/genética , Transdução de SinaisRESUMO
Dendritic cells (DCs) are the key initiators of T-helper (Th) 2 immune responses against the parasitic helminth Schistosoma mansoni. Although the liver is one of the main sites of antigen deposition during infection with this parasite, it is not yet clear how distinct DC subtypes in this tissue respond to S. mansoni antigens in vivo, or how the liver microenvironment might influence DC function during establishment of the Th2 response. In this study, we show that hepatic DC subsets undergo distinct activation processes in vivo following murine infection with S. mansoni. Conventional DCs (cDCs) from schistosome-infected mice upregulated expression of the costimulatory molecule CD40 and were capable of priming naive CD4(+) T cells, whereas plasmacytoid DCs (pDCs) upregulated expression of MHC class II, CD86 and CD40 but were unable to support the expansion of either naive or effector/memory CD4(+) T cells. Importantly, in vivo depletion of pDCs revealed that this subset was dispensable for either maintenance or regulation of the hepatic Th2 effector response during acute S. mansoni infection. Our data provides strong evidence that S. mansoni infection favors the establishment of an immunogenic, rather than tolerogenic, liver microenvironment that conditions cDCs to initiate and maintain Th2 immunity in the context of ongoing antigen exposure.
Assuntos
Células Dendríticas/imunologia , Fígado/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Células Th2/imunologia , Animais , Antígenos de Helmintos/imunologia , Diferenciação Celular , Células Cultivadas , Células Dendríticas/parasitologia , Fígado/parasitologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BLRESUMO
We established a humanized mouse model incorporating FLT3-ligand (FLT3-L) administration after hematopoietic cell reconstitution to investigate expansion, phenotype, and function of human dendritic cells (DC). FLT3-L increased numbers of human CD141(+) DC, CD1c(+) DC, and, to a lesser extent, plasmacytoid DC (pDC) in the blood, spleen, and bone marrow of humanized mice. CD1c(+) DC and CD141(+) DC subsets were expanded to a similar degree in blood and spleen, with a bias toward expansion of the CD1c(+) DC subset in the bone marrow. Importantly, the human DC subsets generated after FLT3-L treatment of humanized mice are phenotypically and functionally similar to their human blood counterparts. CD141(+) DC in humanized mice express C-type lectin-like receptor 9A, XCR1, CADM1, and TLR3 but lack TLR4 and TLR9. They are major producers of IFN-λ in response to polyinosinic-polycytidylic acid but are similar to CD1c(+) DC in their capacity to produce IL-12p70. Although all DC subsets in humanized mice are efficient at presenting peptide to CD8(+) T cells, CD141(+) DC are superior in their capacity to cross-present protein Ag to CD8(+) T cells following activation with polyinosinic-polycytidylic acid. CD141(+) DC can be targeted in vivo following injection of Abs against human DEC-205 or C-type lectin-like receptor 9A. This model provides a feasible and practical approach to dissect the function of human CD141(+) and CD1c(+) DC and evaluate adjuvants and DC-targeting strategies in vivo.
Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos CD1/metabolismo , Antígenos de Superfície/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Glicoproteínas/metabolismo , Proteínas de Membrana/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/metabolismo , Feminino , Humanos , Imunoglobulinas/metabolismo , Interferon gama/metabolismo , Interleucina-12/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Ativação Linfocitária/imunologia , Proteínas de Membrana/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Antígenos de Histocompatibilidade Menor , Poli I-C/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Quimiocinas/metabolismo , Trombomodulina , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismoRESUMO
The method of choice for the development of new vaccines is to target distinct dendritic cell subsets with antigen in vivo and to harness their function in situ to enhance cell-mediated immunity or induce tolerance to specific antigens. The innate functions of dendritic cells themselves may also be targeted by inhibitors or activators that would target a specific function such as interferon production, potentially important in autoimmune disease and chronic viral infections. Importantly targeting dendritic cells requires detailed knowledge of both the surface phenotype and function of each dendritic cell subset, including how they may respond to different types of vaccine adjuvants, their ability to produce soluble mediators and to process and present antigens and induce priming of naïve T cells. This review summarizes our knowledge of the functional attributes of the human dendritic cell subsets in the steady state and upon activation and their roles in human disease.
Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Doenças do Sistema Imunitário/imunologia , Imunidade Celular/imunologia , Linfócitos T/imunologia , Antígenos CD1/imunologia , Antígenos CD1/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Humanos , Infecções/imunologia , Ativação Linfocitária/imunologiaRESUMO
RNA-specific adenosine deaminase (ADAR)-mediated adenosine-to-inosine (A-to-I) editing is a critical arm of the antiviral response. However, mechanistic insights into how A-to-I RNA editing affects viral infection are lacking. We posited that inosine incorporation into RNA facilitates sensing of nonself RNA by innate immune sensors and accordingly investigated the impact of inosine-modified RNA on Toll-like receptor 7 and 8 (TLR7/8) sensing. Inosine incorporation into synthetic single-stranded RNA (ssRNA) potentiated tumor necrosis factor alpha (TNF-α) or alpha interferon (IFN-α) production in human peripheral blood mononuclear cells (PBMCs) in a sequence-dependent manner, indicative of TLR7/8 recruitment. The effect of inosine incorporation on TLR7/8 sensing was restricted to immunostimulatory ssRNAs and was not seen with inosine-containing short double-stranded RNAs or with a deoxy-inosine-modified ssRNA. Inosine-mediated increase of self-secondary structure of an ssRNA resulted in potentiated IFN-α production in human PBMCs through TLR7 recruitment, as established through the use of a TLR7 antagonist and Tlr7-deficient cells. There was a correlation between hyperediting of influenza A viral ssRNA and its ability to stimulate TNF-α, independent of 5'-triphosphate residues, and involving Adar-1. Furthermore, A-to-I editing of viral ssRNA directly enhanced mouse Tlr7 sensing, when present in proportions reproducing biologically relevant levels of RNA editing. Thus, we demonstrate for the first time that inosine incorporation into immunostimulatory ssRNA can potentiate TLR7/8 activation. Our results suggest a novel function of A-to-I RNA editing, which is to facilitate TLR7/8 sensing of phagocytosed viral RNA.