RESUMO
In continuity of our search for novel anticancer agents acting as procaspase activators, we have designed and synthesised two series of (E)-N'-benzylidene-carbohydrazides (4a-m) and (Z)-N'-(2-oxoindolin-3-ylidene)carbohydrazides (5a-g) incorporating 1-(4-chlorobenzyl)-1H-indole core. Bioevaluation showed that the compounds, especially compounds in series 4a-m, exhibited potent cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). Within series 4a-m, compounds with 2-OH substituent (4g-i) exhibited very strong cytotoxicity in three human cancer cell lines assayed with IC50 values in the range of 0.56-0.83 µM. In particular, two compounds 4d and 4f bearing 4-Cl and 4-NO2 substituents, respectively, were the most potent in term of cytotoxicity with IC50 values of 0.011-0.001 µM. In caspase activation assay, compounds 4b and 4f were found to activate caspase activity by 314.3 and 270.7% relative to PAC-1. This investigation has demonstrated the potential of these simple acetohydrazides, especially compounds 4b, 4d, and 4f, as anticancer agents.
Assuntos
Antineoplásicos/síntese química , Inibidores de Caspase/síntese química , Caspases Iniciadoras/metabolismo , Hidrazinas/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazinas/farmacologia , Isatina/química , Simulação de Acoplamento Molecular , Relação Estrutura-AtividadeRESUMO
In search for novel small molecules with antitumor cytotoxicity via activating procaspase-3, we have designed and synthesized three series of novel (E)-N'-benzylidene-4-oxoquinazolin-3(4H)-yl)acetohydrazides (5a-j, 6a-h, and 7a-h). On the phenyl ring ò the benzylidene part, three different substituents, including 2-OH-4-OCH3, 4-OCH3, and 4-N(CH3)2, were introduced, respectively. Biological evaluation showed that the acetohydrazides in series 5a-j, in which the phenyl ring of the benzylidene part was substituted by 2-OH-4-OCH3 substituent, exhibited potent cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung). Most of the compounds, in this series, especially compounds 5c, 5b and 5h, also significantly activated caspase-3 activity. Among these, compound 5c displayed 1.61-fold more potent than PAC-1 as caspase-3 activator. Cell cycle analysis showed that compounds 5b, 5c, and 5h significantly arrested the cell cycle in G1 phase. Further apoptotic studies also demonstrated compounds 5b, 5c, and 5h as strong apoptotic cell death inducers. The docking simulation studies showed that these compounds could activate procaspase via chelating Zn2+ ion bound to the allosteric site of the zymogen.
Assuntos
Antineoplásicos/síntese química , Caspases/metabolismo , Hidrazinas/síntese química , Quinazolinas/química , Sítio Alostérico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazinas/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
Since the first histone deacetylase (HDAC) inhibitor (Zolinza®, widely known as suberoylanilide hydroxamic acid; SAHA) was approved by the Food and Drug Administration for the treatment of T-cell lymphoma in 2006, the search for newer HDAC inhibitors has attracted a great deal of interest of medicinal chemists worldwide. As a continuity of our ongoing research in this area, we designed and synthesized a series of 5-substitutedphenyl-1,3,4-thiadiazole-based hydroxamic acids as analogues of SAHA and evaluated their biological activities. A number of compounds in this series, for example, N(1)-hydroxy-N(8)-(5-(2-chlorophenyl)-1,3,4-thiadiazol-2-yl)octandiamide (5b), N(1)-hydroxy-N(8)-(5-(3-chlorophenyl-1,3,4-thiadiazol-2-yl)octandiamide (5c) and N(1)-hydroxy-N(8)-(5-(4-chlorophenyl)-1,3,4-thiadiazol-2-yl)octandiamide (5d), were found to possess potent anticancer cytotoxicity and HDAC inhibition effects. Compounds 5b-d were generally two- to five-fold more potent in terms of cytotoxicity compared to SAHA against five cancer cell lines tested. Docking studies revealed that these hydroxamic acid displayed higher affinities than SAHA toward HDAC8.
Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Tiadiazóis/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Células MCF-7 , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Data from clinical studies indicate that inhibitors of Class I and Class II histone deacetylase (HDAC) enzymes show great promise for the treatment of cancer. Zolinza (SAHA, Zolinza) was recently approved by the FDA for the treatment of the cutaneous manifestations of cutaneous T-cell lymphoma. As a part of our ongoing effort to identify novel small molecules to target these important enzymes, we have prepared two series of benzothiazole-containing analogues of SAHA. It was found that several compounds with 6C-bridge linking benzothiazole moiety and hydroxamic functional groups showed good inhibition against HDAC3 and 4 at as low as 1 µg/ml and exhibited potent cytotoxicity against five cancer cell lines with average IC(50) values of as low as 0.81 µg/ml, almost equipotent to SAHA.
Assuntos
Antineoplásicos/química , Benzotiazóis/química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacologia , Estrutura Terciária de Proteína , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , VorinostatRESUMO
The search for newer histone deacetylase (HDAC) inhibitors has attracted a great deal of interest of medicinal chemists worldwide, especially after the first HDAC inhibitor (Zolinza(®), widely known as SAHA or Suberoylanilide hydroxamic acid) was approved by the FDA for the treatment of Tcell lymphoma in 2006. As a continuity of our ongoing research in this area, we designed and synthesized a series of 5-aryl-1,3,4-thiadiazole-based hydroxamic acids as analogues of SAHA and evaluated their biological activities. Most of the compounds in this series, e.g. compounds with 5-aryl moiety being 2- furfuryl (5a), 5-bromofuran-2-yl (5b), 5-methylfuran-2-yl (5c), thiophen-2-yl (5d), 5-methylthiophen-2-yl (5f) and pyridyl (5g-i), were found to have potent anticancer cytotoxicity with IC50 values of generally 5- to 10-fold lower than that of SAHA in 4 human cancer cell lines assayed. Those compounds with potent cytotoxicity were also found to have strong HDAC inhibition effects. Docking studies revealed that compounds 5a and 5d displayed high affinities towards HDAC2 and 8.
Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Tiadiazóis/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Células MCF-7 , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Accumulated clinical studies have demonstrated that histone deacetylase (HDAC) inhibitors show great potential for the treatment of cancer. SAHA (Vorinostat, trade name Zolinza) was approved by the FDA in 2006 for the treatment of the cutaneous manifestations of cutaneous T-cell lymphoma. As a continuity of our ongoing effort to identify novel small molecules targeting these important enzymes, we designed and synthesized two series of isatin-3'-oxime- and isatin-3'-methoxime-based hydroxamic acids (3a-g and 6a-g) as analogues of SAHA. Generally in both series it was found that, compounds bearing no substituent or with 5'-F, 5'-Cl, 7'-Cl substitutents on the isatin moiety exhibited good inhibition against histone-H3 and histone-H4 deacetylation at the concentrations of 1 µM, as evaluated by Western Blot assay. The compounds also displayed potent cytotoxicity against five cancer cell lines with IC50 values of as low as 0.08 µM, more than 45-fold lower than that of SAHA. Docking study performed with selected compounds 3a and 6a revealed that these compounds bound to HDAC8 with higher affinities compared to SAHA. Compounds 3a and 6a also bound to HDAC2 at the binding site with high binding affinity. These findings should encourage further elaboration with the isatin moiety to produce more potent HDAC inhibitors with potential anticancer activity.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Isatina/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-AtividadeRESUMO
Results from clinical studies have demonstrated that inhibitors of histone deacetylase (HDAC) enzymes possess promise for the treatment of several types of cancer. Zolinza(®) (widely known as SAHA) has been approved by the FDA for the treatment of T-cell lymphoma. As a continuity of our ongoing research to find novel small molecules to target these important enzymes, we synthesized a series of benzothiazole-containing analogues of SAHA and found several compounds with very potent anticancer cytotoxicity. In this study, three more compounds of this type, including N(1)-(6-chlorobenzo[d]thiazol-2-yl)-N(8)-hydroxyoctanediamide (3a), N(1)-[6-(trifluoromethyl)benzo[d]thiazol-2-yl]-N(8)-hydroxyoctanediamide (3b) and N(1)-(thiazol-2-yl)-N(8)-hydroxyoctanediamide (6) were synthesized and evaluated for HDAC inhibition and cytotoxic activities. All three compounds showed very potent HDAC inhibitory effects. Docking revealed that both two compounds 3a, 3b showed higher affinities towards HDAC(8) compared to SAHA. In vitro, compound 3a exhibited cytotoxicity equipotent to SAHA against five human cancer cell lines. In term of in vivo activity, compound 3a demonstrated equivalent efficacy to SAHA in mouse xenograft model.