Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Genet ; 100(4): 412-429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216016

RESUMO

ZMYND11 is the critical gene in chromosome 10p15.3 microdeletion syndrome, a syndromic cause of intellectual disability. The phenotype of ZMYND11 variants has recently been extended to autism and seizures. We expand on the epilepsy phenotype of 20 individuals with pathogenic variants in ZMYND11. We obtained clinical descriptions of 16 new and nine published individuals, plus detailed case history of two children. New individuals were identified through GeneMatcher, ClinVar and the European Network for Therapies in Rare Epilepsy (NETRE). Genetic evaluation was performed using gene panels or exome sequencing; variants were classified using American College of Medical Genetics (ACMG) criteria. Individuals with ZMYND11 associated epilepsy fell into three groups: (i) atypical benign partial epilepsy or idiopathic focal epilepsy (n = 8); (ii) generalised epilepsies/infantile epileptic encephalopathy (n = 4); (iii) unclassified (n = 8). Seizure prognosis ranged from spontaneous remission to drug resistant. Neurodevelopmental deficits were invariable. Dysmorphic features were variable. Variants were distributed across the gene and mostly de novo with no precise genotype-phenotype correlation. ZMYND11 is one of a small group of chromatin reader genes associated in the pathogenesis of epilepsy, and specifically ABPE. More detailed epilepsy descriptions of larger cohorts and functional studies might reveal genotype-phenotype correlation. The epileptogenic mechanism may be linked to interaction with histone H3.3.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Epilepsia/diagnóstico , Epilepsia/genética , Variação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Bases de Dados Factuais , Eletroencefalografia , Epilepsia/terapia , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
2.
Int J Cardiol ; 393: 131405, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37777071

RESUMO

BACKGROUND: RASopathies account for nearly 20% of cases of childhood hypertrophic cardiomyopathy (HCM). Sudden cardiac death (SCD) occurs in patients with RASopathy-associated HCM, but the risk factors for SCD have not been systematically evaluated. AIM: To validate the HCM Risk-Kids SCD risk prediction model in children with RASopathy-associated HCM and investigate potential specific SCD predictors in this population. METHODS: Validation of HCM Risk-Kids was performed in a retrospective cohort of 169 patients with a RASopathy-associated HCM from 15 international paediatric cardiology centres. Multiple imputation by chained equations was used for missing values related to the HCM Risk-Kids parameters. RESULTS: Eleven patients (6.5%) experienced a SCD or equivalent event at a median age of 12.5 months (IQR 7.7-28.64). The calculated SCD/equivalent event incidence was 0.78 (95% CI 0.43-1.41) per 100 patient years. Six patients (54.54%) with an event were in the low-risk category according to the HCM Risk-Kids model. Harrell's C index was 0.60, with a sensitivity of 9.09%, specificity of 63.92%, positive predictive value of 1.72%, and negative predictive value of 91%; with a poor distinction between the different risk groups. Unexplained syncope (HR 42.17, 95% CI 10.49-169.56, p < 0.001) and non-sustained ventricular tachycardia (HR 5.48, 95% CI 1.58-19.03, p < 0.007) were predictors of SCD on univariate analysis. CONCLUSION: Unexplained syncope and the presence of NSVT emerge as predictors for SCD in children with RASopathy-associated HCM. The HCM Risk-Kids model may not be appropriate to use in this population, but larger multicentre collaborative studies are required to investigate this further.


Assuntos
Cardiomiopatia Hipertrófica , Morte Súbita Cardíaca , Criança , Humanos , Lactente , Pré-Escolar , Estudos Retrospectivos , Fatores de Risco , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/diagnóstico , Síncope , Medição de Risco
3.
Seizure ; 103: 46-50, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279596

RESUMO

Quinidine has been proposed as a repurposed licensed drug for the treatment of seizures in KCNT1 gain-of-function associated Epilepsy of Infancy with Migrating Focal Seizures (EIMFS). Sparse evidence from case reports suggests limited effectiveness and tolerability. Here we report the adaptation of a n-of-1 trial protocol and results of adjunctive quinidine intervention. We adapted a n-of-1 trial protocol from two unpublished protocols and with expert advice including input from pediatric neurology, cardiology and pharmacy colleagues. We tailored this protocol to a severely disabled patient with EIMFS and a de novo c.1420C>T p.Arg474Lys missense variant. We discussed outcome measures with the family of the patient and initiated adjunctive inpatient quinidine treatment with appropriate safety measures. The trial was terminated as a result of intolerable gastrointestinal adverse effects following the initiation dose. Subsequent reports suggest that quinidine may not be effective for this genotype. Quinidine is poorly tolerated across cardiological and neurological indications. Current pooled evidence suggests limited effectiveness for KCNT1 associated epilepsies at doses ≤40mg/kg/d. It is important to report all clinical evidence in precision medicine trials, whether positive or negative, to counter publication bias. This study highlights universal issues around outcome measurement and the evaluation of evidence in rare disease interventions.


Assuntos
Epilepsia , Quinidina , Criança , Humanos , Quinidina/uso terapêutico , Canais de Potássio Ativados por Sódio , Anticonvulsivantes/uso terapêutico , Proteínas do Tecido Nervoso/genética , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/induzido quimicamente , Epilepsia/tratamento farmacológico
4.
Eur J Hum Genet ; 30(3): 298-306, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35017693

RESUMO

TUBA1A tubulinopathy is a rare neurodevelopmental disorder associated with brain malformations as well as early-onset and intractable epilepsy. As pathomechanisms and genotype-phenotype correlations are not completely understood, we aimed to provide further insights into the phenotypic and genetic spectrum. We here present a multicenter case series of ten unrelated individuals from four European countries using systematic MRI re-evaluation, protein structure analysis, and prediction score modeling. In two cases, pregnancy was terminated due to brain malformations. Amongst the eight living individuals, the phenotypic range showed various severity. Global developmental delay and severe motor impairment with tetraparesis was present in 63% and 50% of the subjects, respectively. Epilepsy was observed in 75% of the cases, which showed infantile onset in 83% and a refractory course in 50%. One individual presented a novel TUBA1A-associated electroclinical phenotype with evolvement from early myoclonic encephalopathy to continuous spike-and-wave during sleep. Neuroradiological features comprised a heterogeneous spectrum of cortical and extracortical malformations including rare findings such as cobblestone lissencephaly and subcortical band heterotopia. Two individuals developed hydrocephalus with subsequent posterior infarction. We report four novel and five previously published TUBA1A missense variants whose resulting amino acid substitutions likely affect longitudinal, lateral, and motor protein interactions as well as GTP binding. Assessment of pathogenic and benign variant distributions in synopsis with prediction scores revealed sections of variant enrichment and intolerance to missense variation. We here extend the clinical, neuroradiological, and genetic spectrum of TUBA1A tubulinopathy and provide insights into residue-specific pathomechanisms and genotype-phenotype correlations.


Assuntos
Epilepsia , Lisencefalia , Malformações do Sistema Nervoso , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Humanos , Lisencefalia/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Gravidez , Tubulina (Proteína)/genética
5.
Neurology ; 92(11): e1238-e1249, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737342

RESUMO

OBJECTIVE: The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and establish genotype-phenotype correlations by identifying further disease-related variants. METHODS: We used next-generation sequencing in the framework of research projects and diagnostic testing. Clinical data and EEGs were reviewed, including already published cases. To estimate the pathogenicity of the variants, we used established and newly developed in silico prediction tools. RESULTS: We describe 17 new variants in STX1B, which are distributed across the whole gene. We discerned 4 different phenotypic groups across the newly identified and previously published patients (49 patients in 23 families): (1) 6 sporadic patients or families (31 affected individuals) with febrile and afebrile seizures with a benign course, generally good drug response, normal development, and without permanent neurologic deficits; (2) 2 patients with genetic generalized epilepsy without febrile seizures and cognitive deficits; (3) 13 patients or families with intractable seizures, developmental regression after seizure onset and additional neuropsychiatric symptoms; (4) 2 patients with focal epilepsy. More often, we found loss-of-function mutations in benign syndromes, whereas missense variants in the SNARE motif of syntaxin-1B were associated with more severe phenotypes. CONCLUSION: These data expand the genetic and phenotypic spectrum of STX1B-related epilepsies to a diverse range of epilepsies that span the International League Against Epilepsy classification. Variants in STX1B are protean and contribute to many different epilepsy phenotypes, similar to SCN1A, the most important gene associated with fever-associated epilepsies.


Assuntos
Síndromes Epilépticas/genética , Sintaxina 1/genética , Adolescente , Anticonvulsivantes/uso terapêutico , Criança , Pré-Escolar , Deficiências do Desenvolvimento , Epilepsia Resistente a Medicamentos/genética , Eletroencefalografia , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/fisiopatologia , Síndromes Epilépticas/psicologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Deficiências da Aprendizagem , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Fenótipo , Convulsões Febris , Análise de Sequência de DNA , Adulto Jovem
6.
NPJ Genom Med ; 3: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760947

RESUMO

We evaluated a new epilepsy genetic diagnostic and counseling service covering a UK population of 3.5 million. We calculated diagnostic yield, estimated clinical impact, and surveyed referring clinicians and families. We costed alternative investigational pathways for neonatal onset epilepsy. Patients with epilepsy of unknown aetiology onset < 2 years; treatment resistant epilepsy; or familial epilepsy were referred for counseling and testing. We developed NGS panels, performing clinical interpretation with a multidisciplinary team. We held an educational workshop for paediatricians and nurses. We sent questionnaires to referring paediatricians and families. We analysed investigation costs for 16 neonatal epilepsy patients. Of 96 patients, a genetic diagnosis was made in 34% of patients with seizure onset < 2 years, and 4% > 2 years, with turnaround time of 21 days. Pathogenic variants were seen in SCN8A, SCN2A, SCN1A, KCNQ2, HNRNPU, GRIN2A, SYNGAP1, STXBP1, STX1B, CDKL5, CHRNA4, PCDH19 and PIGT. Clinician prediction was poor. Clinicians and families rated the service highly. In neonates, the cost of investigations could be reduced from £9362 to £2838 by performing gene panel earlier and the median diagnostic delay of 3.43 years reduced to 21 days. Panel testing for epilepsy has a high yield among children with onset < 2 years, and an appreciable clinical and financial impact. Parallel gene testing supersedes single gene testing in most early onset cases that do not show a clear genotype-phenotype correlation. Clinical interpretation of laboratory results, and in-depth discussion of implications for patients and their families, necessitate multidisciplinary input and skilled genetic counseling.

7.
Open Heart ; 3(1): e000329, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925241

RESUMO

OBJECTIVES: 'Idiopathic' cardiac conditions such as dilated cardiomyopathy (DCM) and resuscitated sudden cardiac death (RSCD) may be familial. We suspected that inpatient cardiology services fail to recognise this. Our objective was to compare diagnostic value of family histories recorded by inpatient cardiology teams with a multigenerational family tree obtained by specially trained allied professionals. METHODS: 2 experienced cardiology nurses working in 2 tertiary adult cardiac units were trained in cardiac-inherited diseases and family history (FHx) taking, and established as regional coordinators for a National Cardiac Inherited Disease Registry. Over 6 months they sought 'idiopathic' cardiology inpatients with conditions with a possible familial basis, reviewed the FHx in the clinical records and pursued a minimum 3-generation family tree for syncope, young sudden death and cardiac disease (full FHx). RESULTS: 37 patients (22 males) were selected: mean age 51 years (range 15-79). Admission presentations included (idiopathic) RSCD (14), dyspnoea or heart failure (11), ventricular tachycardia (2), other (10). 3 patients had already volunteered their familial diagnosis to the admitting team. FHx was incompletely elicited in 17 (46%) and absent in 20 (54%). 29 patients (78%) provided a full FHx to the coordinator; 12 of which (41%) were strongly consistent with a diagnosis of a cardiac-inherited disease (DCM 7, hypertrophic cardiomyopathy 3, long QT 1, left ventricular non-compaction 1). Overall, a familial diagnostic rate rose from 3/37(8%) to 12/37 (32%). CONCLUSIONS: Adult cardiology inpatient teams are poor at recording FHx and need to be reminded of its powerful diagnostic value.

8.
Eur J Hum Genet ; 22(1): 88-93, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23632793

RESUMO

Inherited cardiac conditions (ICCs) can lead to sudden cardiac death at any age, yet are often asymptomatic and clinically undetected. Prophylactic interventions are available and cascade testing is recommended to identify family members at risk. When a disease-causing mutation has been identified in a family, pre-symptomatic genetic testing (PSGT) is available. This study explores perceptions of the cascade process, impact of PSGT and attitudes towards direct contact as an alternative to family-mediated dissemination for ICCs. In depth, interviews were conducted with 22 participants eligible for PSGT for Hypertrophic Cardiomyopathy or Long QT syndrome. Data were analysed using an inductive, thematic approach. Risk is perceived to be low pre-test in the absence of symptoms, and participants frequently test with the aim of ruling out risk to self and children. Testing of children is a complex decision; although older participants have concerns about possible adverse effects of genetic testing early in the life course, young participants are pragmatic about their result. The meaning of a positive genetic test result may be difficult to conceptualise in the absence of clinical evidence of disease, and this may deter further dissemination to at-risk family members. A majority of participants see advantages in direct contact from health professionals and support it in principle. Implications for practice include addressing risk perception pre-test, and presenting genetic test information as part of a risk stratification process rather than a binary outcome. Families may require more support or intervention in cascading genetic test information.


Assuntos
Doenças Assintomáticas , Cardiomiopatia Hipertrófica Familiar/psicologia , Testes Genéticos , Síndrome do QT Longo/psicologia , Adulto , Idoso , Cardiomiopatia Hipertrófica Familiar/genética , Morte Súbita Cardíaca/prevenção & controle , Família/psicologia , Feminino , Humanos , Síndrome do QT Longo/genética , Masculino , Pessoa de Meia-Idade , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA