Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biomech Eng ; 146(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851545

RESUMO

Diversity, equity, and inclusion (DEI) are interconnected with bioengineering, yet have historically been absent from accreditation standards and curricula. Toward educating DEI-competent bioengineers and meeting evolving accreditation requirements, we took a program-level approach to incorporate, catalog, and assess DEI content through the bioengineering undergraduate program. To support instructors in adding DEI content and inclusive pedagogy, our team developed a DEI planning worksheet and surveyed instructors pre- and post-course. Over the academic year, 74% of instructors provided a pre-term and/or post-term response. Of responding instructors, 91% described at least one DEI curricular content improvement, and 88% incorporated at least one new inclusive pedagogical approach. Based on the curricular adjustments reported by instructors, we grouped the bioengineering-related DEI content into five DEI competency categories: bioethics, inclusive design, inclusive scholarship, inclusive professionalism, and systemic inequality. To assess the DEI content incorporation, we employed direct assessment via course assignments, end-of-module student surveys, end-of-term course evaluations, and an end-of-year program review. When asked how much their experience in the program helped them develop specific DEI competencies, students reported a relatively high average of 3.79 (scale of 1 = "not at all" to 5 = "very much"). Additionally, based on student performance in course assignments and other student feedback, we found that instructors were able to effectively incorporate DEI content into a wide variety of courses. We offer this framework and lessons learned to be adopted by programs similarly motivated to train DEI-competent engineering professionals and provide an equitable, inclusive engineering education for all students.


Assuntos
Currículo , Diversidade, Equidade, Inclusão , Humanos , Estudantes , Bioengenharia
2.
Europace ; 23(23 Suppl 1): i3-i11, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33751074

RESUMO

AIMS: Computationally guided persistent atrial fibrillation (PsAF) ablation has emerged as an alternative to conventional treatment planning. To make this approach scalable, computational cost and the time required to conduct simulations must be minimized while maintaining predictive accuracy. Here, we assess the sensitivity of the process to finite-element mesh resolution. We also compare methods for pacing site distribution used to evaluate inducibility arrhythmia sustained by re-entrant drivers (RDs). METHODS AND RESULTS: Simulations were conducted in low- and high-resolution models (average edge lengths: 400/350 µm) reconstructed from PsAF patients' late gadolinium enhancement magnetic resonance imaging scans. Pacing was simulated from 80 sites to assess RD inducibility. When pacing from the same site led to different outcomes in low-/high-resolution models, we characterized divergence dynamics by analysing dissimilarity index over time. Pacing site selection schemes prioritizing even spatial distribution and proximity to fibrotic tissue were evaluated. There were no RD sites observed in low-resolution models but not high-resolution models, or vice versa. Dissimilarity index analysis suggested that differences in simulation outcome arising from differences in discretization were the result of isolated conduction block incidents in one model but not the other; this never led to RD sites unique to one mesh resolution. Pacing site selection based on fibrosis proximity led to the best observed trade-off between number of stimulation locations and predictive accuracy. CONCLUSION: Simulations conducted in meshes with 400 µm average edge length and ∼40 pacing sites proximal to fibrosis are sufficient to reveal the most comprehensive possible list of RD sites, given feasibility constraints.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/terapia , Estimulação Cardíaca Artificial , Meios de Contraste , Gadolínio , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Humanos , Telas Cirúrgicas
3.
J Biomech Eng ; 142(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31233093

RESUMO

Although mutations in the Lamin A/C gene (LMNA) cause a variety of devastating diseases, the pathological mechanism is often unknown. Lamin A/C proteins play a crucial role in forming a meshwork under the nuclear membrane, providing the nucleus with mechanical integrity and interacting with other proteins for gene regulation. Most LMNA mutations result in heart diseases, including some types that primarily have heart disease as the main pathology. In this study, we used cells from patients with different LMNA mutations that primarily lead to heart disease. Indeed, it is a mystery why a mutation to the protein in every nucleus of the body manifests as a disease of primarily the heart in these patients. Here, we aimed to investigate if strains mimicking those within the myocardial environment are sufficient to cause differences in cells with and without the LMNA mutation. To test this, a stretcher device was used to induce cyclic strain upon cells, and viability/proliferation, cytoskeleton and extracellular matrix organization, and nuclear morphology were quantified. The properties of cells with Hutchinson-Gilford progeria syndrome (HGPS) were found to be significantly different from all other cell lines and were mostly in line with previous findings. However, the properties of cells from patients who primarily had heart diseases were not drastically different when compared to individuals without the LMNA mutation. Our results indicated that cyclic strain alone was insufficient to cause any significant differences that could explain the mechanisms that lead to heart diseases in these patients with LMNA mutations.


Assuntos
Lamina Tipo A , Progéria , Núcleo Celular , Fibroblastos , Regulação da Expressão Gênica , Humanos , Mutação
4.
Cell Mol Bioeng ; 16(4): 243-259, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37810996

RESUMO

Introduction: Early afterdepolarizations (EADs) are secondary voltage depolarizations associated with reduced repolarization reserve (RRR) that can trigger lethal arrhythmias. Relating EADs to triggered activity is difficult to study, so the ability to suppress or provoke EADs would be experimentally useful. Here, we use computational simulations to assess the feasibility of subthreshold optogenetic stimulation modulating the propensity for EADs (cell-scale) and EAD-associated ectopic beats (organ-scale). Methods: We modified a ventricular ionic model by reducing rapid delayed rectifier potassium (0.25-0.1 × baseline) and increasing L-type calcium (1.0-3.5 × baseline) currents to create RRR conditions with varying severity. We ran simulations in models of single cardiomyocytes and left ventricles from post-myocardial infarction patient MRI scans. Optogenetic stimulation was simulated using either ChR2 (depolarizing) or GtACR1 (repolarizing) opsins. Results: In cell-scale simulations without illumination, EADs were seen for 164 of 416 RRR conditions. Subthreshold stimulation of GtACR1 reduced EAD incidence by up to 84.8% (25/416 RRR conditions; 0.1 µW/mm2); in contrast, subthreshold ChR2 excitation increased EAD incidence by up to 136.6% (388/416 RRR conditions; 50 µW/mm2). At the organ scale, we assumed simultaneous, uniform illumination of the epicardial and endocardial surfaces. GtACR1-mediated suppression (10-50 µW/mm2) and ChR2-mediated unmasking (50-100 µW/mm2) of EAD-associated ectopic beats were feasible in three distinct ventricular models. Conclusions: Our findings suggest that optogenetics could be used to silence or provoke both EADs and EAD-associated ectopic beats. Validation in animal models could lead to exciting new experimental regimes and potentially to novel anti-arrhythmia treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00781-z.

5.
Front Physiol ; 12: 718622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526912

RESUMO

Optogenetic defibrillation of hearts expressing light-sensitive cation channels (e.g., ChR2) has been proposed as an alternative to conventional electrotherapy. Past modeling work has shown that ChR2 stimulation can depolarize enough myocardium to interrupt arrhythmia, but its efficacy is limited by light attenuation and high energy needs. These shortcomings may be mitigated by using new optogenetic proteins like Guillardia theta Anion Channelrhodopsin (GtACR1), which produces a repolarizing outward current upon illumination. Accordingly, we designed a study to assess the feasibility of GtACR1-based optogenetic arrhythmia termination in human hearts. We conducted electrophysiological simulations in MRI-based atrial or ventricular models (n = 3 each), with pathological remodeling from atrial fibrillation or ischemic cardiomyopathy, respectively. We simulated light sensitization via viral gene delivery of three different opsins (ChR2, red-shifted ChR2, GtACR1) and uniform endocardial illumination at the appropriate wavelengths (blue, red, or green light, respectively). To analyze consistency of arrhythmia termination, we varied pulse timing (three evenly spaced intervals spanning the reentrant cycle) and intensity (atrial: 0.001-1 mW/mm2; ventricular: 0.001-10 mW/mm2). In atrial models, GtACR1 stimulation with 0.005 mW/mm2 green light consistently terminated reentry; this was 10-100x weaker than the threshold levels for ChR2-mediated defibrillation. In ventricular models, defibrillation was observed in 2/3 models for GtACR1 stimulation at 0.005 mW/mm2 (100-200x weaker than ChR2 cases). In the third ventricular model, defibrillation failed in nearly all cases, suggesting that attenuation issues and patient-specific organ/scar geometry may thwart termination in some cases. Across all models, the mechanism of GtACR1-mediated defibrillation was voltage forcing of illuminated tissue toward the modeled channel reversal potential of -40 mV, which made propagation through affected regions impossible. Thus, our findings suggest GtACR1-based optogenetic defibrillation of the human heart may be feasible with ≈2-3 orders of magnitude less energy than ChR2.

6.
J Vis Exp ; (153)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31814616

RESUMO

Science relies on increasingly complex data sets for progress, but common data management methods such as spreadsheet programs are inadequate for the growing scale and complexity of this information. While database management systems have the potential to rectify these issues, they are not commonly utilized outside of business and informatics fields. Yet, many research labs already generate "medium sized", low velocity, multi-dimensional data that could greatly benefit from implementing similar systems. In this article, we provide a conceptual overview explaining how databases function and the advantages they provide in tissue engineering applications. Structural fibroblast data from individuals with a lamin A/C mutation was used to illustrate examples within a specific experimental context. Examples include visualizing multidimensional data, linking tables in a relational database structure, mapping a semi-automated data pipeline to convert raw data into structured formats, and explaining the underlying syntax of a query. Outcomes from analyzing the data were used to create plots of various arrangements and significance was demonstrated in cell organization in aligned environments between the positive control of Hutchinson-Gilford progeria, a well-known laminopathy, and all other experimental groups. In comparison to spreadsheets, database methods were enormously time efficient, simple to use once set up, allowed for immediate access of original file locations, and increased data rigor. In response to the National Institutes of Health (NIH) emphasis on experimental rigor, it is likely that many scientific fields will eventually adopt databases as common practice due to their strong capability to effectively organize complex data.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Engenharia Tecidual , Linhagem Celular , Humanos , Lamina Tipo A/genética , Estados Unidos
7.
PLoS One ; 12(11): e0188256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149195

RESUMO

Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method's utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.


Assuntos
Núcleo Celular/genética , Fibroblastos/metabolismo , Cardiopatias/diagnóstico , Lamina Tipo A/genética , Mutação , Progéria/diagnóstico , Adulto , Fatores Etários , Idade de Início , Idoso , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Éxons , Feminino , Fibroblastos/ultraestrutura , Expressão Gênica , Cardiopatias/genética , Cardiopatias/patologia , Humanos , Processamento de Imagem Assistida por Computador , Lamina Tipo A/metabolismo , Masculino , Microscopia , Pessoa de Meia-Idade , Variações Dependentes do Observador , Forma das Organelas , Cultura Primária de Células , Progéria/genética , Progéria/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA