Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
EMBO J ; 41(8): e109463, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35229328

RESUMO

In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.


Assuntos
ATP Citrato (pro-S)-Liase , Medula Óssea , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Histonas/metabolismo
2.
BMC Gastroenterol ; 22(1): 153, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35350978

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest gastrointestinal cancers with a 5-year survival rate of less than 10%. Biomarkers for early PDAC detection are useful in treating patients with PDAC. Extracellular vesicles (EVs) are lipid-bound vesicles that are potential biomarkers of various diseases such as PDAC. In this study, we quantitatively measured the serum levels of EVs (CD63+-EVs) or platelet-derived EVs (CD41+- and CD61+-EVs) and evaluated their potential use as biomarkers of PDAC. METHODS: We measured the serum levels of CD63+-, CD41+-, CD61+-EVs using sandwich enzyme-linked immunosorbent assay based on Tim4 with specificity for phosphatidylserine on EVs in age- and sex-matched healthy controls (HCs, n = 39) and patients with PDAC (n = 39). We also examined the effect of tumor burden on the serum EV levels after surgical resection (n = 28). CA19-9, a clinical PDAC biomarker, was also measured for comparison. RESULTS: Serum levels of CD63+-EVs, CD41+-EVs, and CD61+-EVs were significantly increased in patients with PDAC compared to HCs. Receiver operating characteristic analysis revealed that CD63+-EVs exhibited the highest diagnostic performance to discriminate patients with PDAC from HCs (area under the curve (AUC): 0.846), which was comparable to CA19-9 (AUC: 0.842). CA19-9 showed lower AUC values in early stages (I-II, AUC: 0.814) than in late stages (III-IV, AUC: 0.883) PDAC. Conversely, CD63+-EVs, CD41+-EVs, and CD61+-EVs showed comparable AUCs between early- and late-stage PDAC. The combined use of CA19-9 and CD63+-EVs showed a higher diagnostic performance for early-stage PDAC (AUC: 0.903) than CA19-9. The serum levels of CD63+-EVs, CD41+-EVs, CD61+-EVs, and CA19-9 decreased significantly after surgical resection, demonstrating that EVs are increased in sera of patients depending on the tumor burden. CONCLUSIONS: The serum levels of CD63+-EVs and platelet-derived EVs (CD41+-EVs, CD61+-EVs) are increased in patients with PDAC than HCs. Since CD63+-EVs showed a high AUC to discriminate patients with PDAC from HCs; they might be useful as potential biomarkers for PDAC.


Assuntos
Adenocarcinoma , Vesículas Extracelulares , Neoplasias Pancreáticas , Adenocarcinoma/diagnóstico , Biomarcadores Tumorais , Estudos de Casos e Controles , Vesículas Extracelulares/patologia , Humanos , Neoplasias Pancreáticas/patologia , Tetraspanina 30
3.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887075

RESUMO

Neurotrophins are a family of secreted proteins expressed in the peripheral nervous system and the central nervous system that support neuronal survival, synaptic plasticity, and neurogenesis. Brain-derived neurotrophic factor (BDNF) and its high affinity receptor TrkB are highly expressed in the cortical and hippocampal areas and play an essential role in learning and memory. The decline of cognitive function with aging is a major risk factor for cognitive diseases such as Alzheimer's disease. Therefore, an alteration of BDNF/TrkB signaling with aging and/or pathological conditions has been indicated as a potential mechanism of cognitive decline. In this review, we summarize the cellular function of neurotrophin signaling and review the current evidence indicating a pathological role of neurotrophin signaling, especially of BDNF/TrkB signaling, in the cognitive decline in aging and age-related cognitive diseases. We also review the therapeutic approach for cognitive decline by the upregulation of the endogenous BDNF/TrkB-system.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Humanos , Neurotrofina 3/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia
4.
Neurobiol Dis ; 152: 105279, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516873

RESUMO

Sialidosis is a neuropathic lysosomal storage disease caused by a deficiency in the NEU1 gene-encoding lysosomal neuraminidase and characterized by abnormal accumulation of undigested sialyl-oligoconjugates in systemic organs including brain. Although patients exhibit neurological symptoms, the underlying neuropathological mechanism remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts with sialidosis and induced the differentiation into neural progenitor cells (NPCs) and neurons. Sialidosis NPCs and neurons mimicked the disease-like phenotypes including reduced neuraminidase activity, accumulation of sialyl-oligoconjugates and lysosomal expansions. Functional analysis also revealed that sialidosis neurons displayed two distinct abnormalities, defective exocytotic glutamate release and augmented α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)-mediated Ca2+ influx. These abnormalities were restored by overexpression of the wild-type NEU1 gene, demonstrating causative role of neuraminidase deficiency in functional impairments of disease neurons. Comprehensive proteomics analysis revealed the significant reduction of SNARE proteins and glycolytic enzymes in synaptosomal fraction, with downregulation of ATP production. Bypassing the glycolysis by treatment of pyruvate, which is final metabolite of glycolysis pathway, improved both the synaptsomal ATP production and the exocytotic function. We also found that upregulation of AMPAR and L-type voltage dependent Ca2+ channel (VDCC) subunits in disease neurons, with the restoration of AMPAR-mediated Ca2+ over-load by treatment of antagonists for the AMPAR and L-type VDCC. Our present study provides new insights into both the neuronal pathophysiology and potential therapeutic strategy for sialidosis.


Assuntos
Sinalização do Cálcio/fisiologia , Mucolipidoses/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Exocitose/fisiologia , Glicólise/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Sinapses/patologia , Sinapses/fisiologia
5.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071978

RESUMO

The function of the brain-derived neurotrophic factor (BDNF) via activation through its high-affinity receptor Tropomyosin receptor kinase B (TrkB) has a pivotal role in cell differentiation, cell survival, synaptic plasticity, and both embryonic and adult neurogenesis in central nervous system neurons. A number of studies have demonstrated the possible involvement of altered expression and action of the BDNF/TrkB signaling in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). In this review, we introduce an essential role of the BDNF and its downstream signaling in neural function. We also review the current evidence on the deregulated the BDNF signaling in the pathophysiology of AD at gene, mRNA, and protein levels. Further, we discuss a potential usefulness of small compounds, including flavonoids, which can stimulate BDNF-related signaling as a BDNF-targeting therapy.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Suscetibilidade a Doenças , Transdução de Sinais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo/genética , Sobrevivência Celular/efeitos dos fármacos , Gerenciamento Clínico , Flavonoides/farmacologia , Humanos , Terapia de Alvo Molecular , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463271

RESUMO

It is well known that brain-derived neurotrophic factor, BDNF, has an important role in a variety of neuronal aspects, such as differentiation, maturation, and synaptic function in the central nervous system (CNS). BDNF stimulates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide-3kinase (PI3K), and phospholipase C (PLC)-gamma pathways via activation of tropomyosin receptor kinase B (TrkB), a high affinity receptor for BDNF. Evidence has shown significant contributions of these signaling pathways in neurogenesis and synaptic plasticity in in vivo and in vitro experiments. Importantly, it has been demonstrated that dysfunction of the BDNF/TrkB system is involved in the onset of brain diseases, including neurodegenerative and psychiatric disorders. In this review, we discuss actions of BDNF and related signaling molecules on CNS neurons, and their contributions to the pathophysiology of brain diseases.


Assuntos
Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurogênese , Neurônios/metabolismo , Animais , Antidepressivos/uso terapêutico , Encefalopatias/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
7.
Int J Mol Sci ; 18(11)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099059

RESUMO

Altered neurogenesis is suggested to be involved in the onset of brain diseases, including mental disorders and neurodegenerative diseases. Neurotrophic factors are well known for their positive effects on the proliferation/differentiation of both embryonic and adult neural stem/progenitor cells (NSCs/NPCs). Especially, brain-derived neurotrophic factor (BDNF) has been extensively investigated because of its roles in the differentiation/maturation of NSCs/NPCs. On the other hand, recent evidence indicates a negative impact of the stress hormone glucocorticoids (GCs) on the cell fate of NSCs/NPCs, which is also related to the pathophysiology of brain diseases, such as depression and autism spectrum disorder. Furthermore, studies including ours have demonstrated functional interactions between neurotrophic factors and GCs in neural events, including neurogenesis. In this review, we show and discuss relationships among the behaviors of NSCs/NPCs, BDNF, and GCs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glucocorticoides/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Estresse Fisiológico , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Transporte Proteico
8.
Biochem Biophys Res Commun ; 456(1): 465-70, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25482448

RESUMO

Evidence suggests that neuronal microRNAs (miRs) contribute to synaptic plasticity, although a role of glial miRs have been unknown. Growth factors including brain-derived neurotrophic factor (BDNF) regulate neuronal functions via upregulation of miRs, while possible influences on expression/function of glial miRs have not been fully understood. Here, we report that basic fibroblast growth factor (bFGF) increased miR-134 expression in astrocyte. The miR-134 was upregulated through stimulating extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling, because inhibitors for each signaling blocked the miR-134 induction by bFGF. We also found upregulation of glial fibrillary acidic protein (astrocyte marker) and decreased extracellular concentration of glutamate after miR-134 overexpression and bFGF application, suggesting that astroglial cell maturation is enhanced by bFGF through induction of miR-134.


Assuntos
Astrócitos/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , MicroRNAs/metabolismo , Animais , Astrócitos/metabolismo , Proliferação de Células , Sobrevivência Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Neuroglia/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ratos , Ratos Wistar , Transdução de Sinais , Regulação para Cima
9.
Synapse ; 68(6): 257-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615983

RESUMO

Downregulation of brain-derived neurotrophic factor (BDNF), a member of neurotrophin family, has been implicated in psychiatric diseases including schizophrenia. However, detailed mechanisms of its reduction in patients with schizophrenia remain unclear. Here, using cultured cortical neurons, we monitored BDNF mRNA levels following acute application of phencyclidine [PCP; an N-methyl-d-aspartate (NMDA) receptor blocker], which is known to produce schizophrenia-like symptoms. We found that PCP rapidly caused a reduction in total amount of BDNF transcripts without effect on cell viability, while mRNA levels of nerve growth factor was intact. Actinomycin-D (ActD), an RNA synthesis inhibitor, decreased total BDNF mRNA levels similar to PCP, and coapplication of ActD with PCP did not show further reduction in BDNF mRNA compared with solo application of each drug. Among BDNF exons I, IV, and VI, the exon IV, which is positively regulated by neuronal activity, was highly sensitive to PCP. Furthermore, PCP inactivated cAMP response element-binding protein (CREB; a regulator of transcriptional activity of exon IV). The inactivation of CREB was also achieved by an inhibitor for Ca(2+) /calmodulin kinase II (CaMKII), although coapplication with PCP induced no further inhibition on the CREB activity. It is possible that PCP decreases BDNF transcription via blocking the NMDA receptor/CaMKII/CREB signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Alucinógenos/farmacologia , Neurônios/efeitos dos fármacos , Fenciclidina/farmacologia , RNA Mensageiro/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Proteína de Ligação a CREB/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Dactinomicina/farmacologia , Éxons , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
10.
Neurochem Res ; 39(4): 785-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24599793

RESUMO

Low birth weight due to intrauterine growth retardation (IUGR) is suggested to be a risk factor for various psychiatric disorders such as schizophrenia. It has been reported that developmental cortical dysfunction and neurocognitive deficits are observed in individuals with IUGR, however, the underlying molecular mechanisms have yet to be elucidated. Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are associated with schizophrenia and play a role in cortical development. We previously demonstrated that BDNF induced glutamate release through activation of the TrkB/phospholipase C-γ (PLC-γ) pathway in developing cultured cortical neurons, and that, using a rat model for IUGR caused by maternal administration of thromboxane A2, cortical levels of TrkB were significantly reduced in IUGR rats at birth. These studies prompted us to hypothesize that TrkB reduction in IUGR cortex led to impairment of BDNF-dependent glutamatergic neurotransmission. In the present study, we found that BDNF-induced glutamate release was strongly impaired in cultured IUGR cortical neurons where TrkB reduction was maintained. Impairment of BDNF-induced glutamate release in IUGR neurons was ameliorated by transfection of human TrkB (hTrkB). Although BDNF-stimulated phosphorylation of TrkB and of PLC-γ was decreased in IUGR neurons, the hTrkB transfection recovered the deficits in their phosphorylation. These results suggest that TrkB reduction causes impairment of BDNF-stimulated glutamatergic function via suppression of TrkB/PLC-γ activation in IUGR cortical neurons. Our findings provide molecular insights into how IUGR links to downregulation of BDNF function in the cortex, which might be involved in the development of IUGR-related diseases such as schizophrenia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Córtex Cerebral/enzimologia , Retardo do Crescimento Fetal/enzimologia , Ácido Glutâmico/metabolismo , Fosfolipase C gama/metabolismo , Receptor trkB/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosfolipase C gama/antagonistas & inibidores , Gravidez , Ratos , Ratos Long-Evans , Ratos Wistar , Receptor trkB/antagonistas & inibidores
11.
Curr Protoc ; 3(5): e777, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37166286

RESUMO

Single-cell multi-omics analysis has emerged as a crucial tool in modern biology due to its capacity to uncover the intricate molecular heterogeneity within individual cells. Glycan structural diversity on the cell surface creates a "cell signature" that varies by cell type and state. However, single-cell glycan analysis remains a challenge. This protocol presents a series of techniques and procedures that enable the simultaneous measurements of glycan and RNA at the single-cell level via DNA-barcoded lectin-based sequencing (scGR-seq). The techniques include (1) the preparation of DNA-barcoded lectins, (2) a step-by-step protocol for single-cell glycan/RNA sequencing, and (3) a data analysis approach for the integration of glycan and RNA data. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation of DNA-barcoded lectins Basic Protocol 2: Single-cell glycan/RNA sequencing.


Assuntos
Lectinas , Polissacarídeos , Análise de Sequência de RNA , Membrana Celular/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Lectinas/química , Lectinas/metabolismo , RNA/genética
12.
STAR Protoc ; 3(1): 101179, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243371

RESUMO

Glycans are structurally diverse molecules found on the surface of living cells. The protocol details a system developed for combined analysis of glycan and RNA in single cells (scGR-seq) using human induced pluripotent stem cells (hiPSCs) and hiPSC-derived neural progenitor cells (NPCs). scGR-seq consists of DNA-barcoded lectin-based glycan profiling by sequencing (scGlycan-seq) and single-cell transcriptome profiling (scRNA-seq). scGR-seq will be an essential technique to delineate the cellular heterogeneity of glycans across multicellular systems. For complete details on the use and execution of this profile, please refer to Minoshima et al. (2021).


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA , Humanos , Polissacarídeos , RNA/genética , Análise de Célula Única/métodos , Transcriptoma/genética
13.
iScience ; 24(8): 102882, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401666

RESUMO

Single-cell sequencing has emerged as an indispensable technology to dissect cellular heterogeneity but never been applied to the simultaneous analysis of glycan and RNA. Using oligonucleotide-labeled lectins, we first established lectin-based glycan profiling of single cells by sequencing (scGlycan-seq). We then combined the scGlycan-seq with single-cell transcriptome profiling for joint analysis of glycan and RNA in single cells (scGR-seq). Using scGR-seq, we analyzed the two modalities in human induced pluripotent stem cells (hiPSCs) before and after differentiation into neural progenitor cells at the single-cell resolution. The combination of RNA and glycan separated the two cell types clearer than either one of them. Furthermore, integrative analysis of glycan and RNA modalities in single cells found known and unknown lectins that were specific to hiPSCs and coordinated with neural differentiation. Taken together, we demonstrate that scGR-seq can reveal the cellular heterogeneity and biological roles of glycans across multicellular systems.

14.
FEBS Open Bio ; 11(3): 741-752, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345458

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of ß-amyloid plaques and the formation of neurofibrillary tangles. Extracellular vesicles (EVs) are small vesicles surrounded by a lipid bilayer membrane, which may be involved in the progression of AD. Glycans are essential building blocks of EVs, and we hypothesized that EV glycans may reflect pathological conditions of various diseases. Here, we performed glycan profiling of EVs prepared from sera of three AD patients (APs) compared to three healthy donors (HDs) using lectin microarray. Distinct glycan profiles were observed. Mannose-binding lectins exhibited significantly higher signals for AP-derived EVs than HD-derived EVs. Lectin blotting using mannose-binding lectin (rPALa) showed a single protein band at ~ 80 kDa exclusively in AP-derived EVs. LC-MS/MS analysis identified a protein band precipitated by rPALa as CD61, a marker of platelet-derived exosomes (P-Exo). Sandwich assays using Tim4 with specificity for phosphatidylserine on EVs and antibodies against P-Exo markers (CD61, CD41, CD63, and CD9) revealed that P-Exo is significantly elevated in sera of APs (n = 16) relative to age- and sex-matched HDs (n = 16). Tim4-αCD63 showed the highest value for the area under the curve (0.957) for discriminating APs from HDs, which should lead to a better understanding of AD pathology and may facilitate the development of a novel diagnostic method for AD.


Assuntos
Doença de Alzheimer/sangue , Plaquetas/citologia , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Tetraspanina 30/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Biomarcadores/metabolismo , Plaquetas/metabolismo , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Integrina beta3/metabolismo , Masculino , Pessoa de Meia-Idade , Polissacarídeos/metabolismo , Análise Serial de Proteínas , Espectrometria de Massas em Tandem , Adulto Jovem
15.
Stem Cell Reports ; 14(5): 909-923, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302553

RESUMO

GM1 gangliosidosis is a lysosomal storage disease caused by loss of lysosomal ß-galactosidase activity and characterized by progressive neurodegeneration due to massive accumulation of GM1 ganglioside in the brain. Here, we generated induced pluripotent stem cells (iPSCs) derived from patients with GM1 gangliosidosis, and the resultant neurons showed impaired neurotransmitter release as a presynaptic function and accumulation of GM1 ganglioside. Treatment of normal neurons with GM1 ganglioside also disturbed presynaptic function. A high-content drug-screening system was then established and identified two compounds as drug candidates for GM1 gangliosidosis. Treatment of the patient-derived neurons with the candidate agents activated autophagy pathways, reducing GM1 ganglioside accumulation in vitro and in vivo, and restoring the presynaptic dysfunction. Our findings thus demonstrated the potential value of patient-derived iPSC lines as cellular models of GM1 gangliosidosis and revealed two potential therapeutic agents for future clinical application.


Assuntos
Autofagia , Gangliosídeo G(M1)/metabolismo , Gangliosidose GM1/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Desenvolvimento de Medicamentos/métodos , Gangliosidose GM1/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
16.
Neuroscience ; 414: 128-140, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31283907

RESUMO

Tay-Sachs disease (TSD) is a GM2 gangliosidosis lysosomal storage disease caused by a loss of lysosomal hexosaminidase-A (HEXA) activity and characterized by progressive neurodegeneration due to the massive accumulation of GM2 ganglioside in the brain. Here, we generated iPSCs derived from patients with TSD, and found similar potential for neural differentiation between TSD-iPSCs and normal iPSCs, although neural progenitor cells (NPCs) derived from the TSD-iPSCs exhibited enlarged lysosomes and upregulation of the lysosomal marker, LAMP1, caused by the accumulation of GM2 ganglioside. The NPCs derived from TSD-iPSCs also had an increased incidence of oxidative stress-induced cell death. TSD-iPSC-derived neurons showed a decrease in exocytotic activity with the accumulation of GM2 ganglioside, suggesting deficient neurotransmission in TSD. Our findings demonstrated that NPCs and mature neurons derived from TSD-iPSCs are potentially useful cellular models of TSD and are useful for investigating the efficacy of drug candidates in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Doença de Tay-Sachs/fisiopatologia , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Células-Tronco Neurais/fisiologia , Neuritos/fisiologia , Sinapsinas/metabolismo , Doença de Tay-Sachs/metabolismo , Regulação para Cima/fisiologia
17.
Neurochem Int ; 118: 217-224, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29958871

RESUMO

Prolonged and intense stress chronically increases blood concentration of glucocorticoids, which in turn causes downregulation of glucocorticoid receptor (GR) in the central nervous system (CNS). This process has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). Here, we found that basic fibroblast growth factor (bFGF) increased the expression of GR in the rat cerebral cortex and cultured cortical neurons and restored the reduced GR expression caused by glucocorticoid exposure. Among intracellular signaling pathways stimulated by bFGF, extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway was responsible for the upregulation of GR. The bFGF-induced GR was functional as a transcription factor to enhance transcription of a target gene. Because high stress augments bFGF levels in the brain, it is likely that bFGF plays a compensating role for reduced GR expression after stress and thus should be studied as a therapeutic target for the treatment of MDD.


Assuntos
Córtex Cerebral/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
18.
Dis Model Mech ; 11(1)2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29208635

RESUMO

Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments.


Assuntos
Vesículas Extracelulares/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Tetraspanina 30/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Embrião de Mamíferos/metabolismo , Humanos , Modelos Animais , Ratos Transgênicos , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/metabolismo
19.
Neural Regen Res ; 12(7): 1028-1035, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28852377

RESUMO

Neurogenesis is currently an area of great interest in neuroscience. It is closely linked to brain diseases, including mental disorders and neurodevelopmental disease. Both embryonic and adult neurogeneses are influenced by glucocorticoids secreted from the adrenal glands in response to a variety of stressors. Moreover, proliferation/differentiation of the neural stem/progenitor cells (NSPCs) is affected by glucocorticoids through intracellular signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, hedgehog, and Wnt. Our review presents recent evidence of the impact of glucocorticoids on NSPC behaviors and the underlying molecular mechanisms; this provides important information for understanding the pathological role of glucocorticoids on neurogenesis-associated brain diseases.

20.
Neurochem Int ; 97: 26-33, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27131735

RESUMO

MicroRNAs (miRs) play important roles in neuronal differentiation, maturation, and synaptic function in the central nervous system. They have also been suggested to be implicated in the pathogenesis of neurodegenerative and psychiatric diseases. Although miR-132 is one of the well-studied brain-specific miRs, which regulates synaptic structure and function in the postnatal brain, its function in the prenatal brain is still unclear. Here, we investigated miR-132 function during differentiation of rat embryonic neural stem cells (eNSCs). We found that miR-132 expression significantly increased during the fetal rat brain development and neural differentiation of eNSCs in vitro. Furthermore, miR-132 expression was increased during differentiation through MAPK/ERK1/2 pathway. Inhibition of ERK1/2 activation resulted in increased levels of synaptic proteins including PSD-95, GluR1 and synapsin I. Silencing of miR-132 also increased PSD-95 and GluR1. Considering that miR-132 increases synaptic proteins in differentiated cortical neurons, our result shows a novel function of miR-132 as a negative regulator for synaptic maturation in the neuronal differentiation of eNSCs.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , MicroRNAs/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Células Cultivadas , Expressão Gênica , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Wistar , Sinapses/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA