RESUMO
ABSTRACT: Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.
Assuntos
Linfoma Cutâneo de Células T , Síndrome de Sézary , Neoplasias Cutâneas , Infecções Estafilocócicas , Humanos , Síndrome de Sézary/tratamento farmacológico , Síndrome de Sézary/patologia , Staphylococcus aureus , NF-kappa B , Linfócitos T , Enterotoxinas/farmacologia , Linfoma Cutâneo de Células T/patologia , Receptores de Antígenos de Linfócitos T , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Resistência a MedicamentosRESUMO
Cutaneous T-cell lymphoma (CTCL) is a devastating lymphoid malignancy characterized by the accumulation of malignant T cells in the dermis and epidermis. Skin lesions cause serious symptoms that hamper quality of life and are entry sites for bacterial infection, a major cause of morbidity and mortality in advanced diseases. The mechanism driving the pathological processes that compromise the skin barrier remains unknown. Here, we report increased transepidermal water loss and compromised expression of the skin barrier proteins filaggrin and filaggrin-2 in areas adjacent to TOX-positive T cells in CTCL skin lesions. Malignant T cells secrete mediators (including cytokines such as interleukin 13 [IL-13], IL-22, and oncostatin M) that activate STAT3 signaling and downregulate filaggrin and filaggrin-2 expression in human keratinocytes and reconstructed human epithelium. Consequently, the repression of filaggrins can be counteracted by a cocktail of antibodies targeting these cytokines/receptors, small interfering RNA-mediated knockdown of JAK1/STAT3, and JAK1 inhibitors. Notably, we show that treatment with a clinically approved JAK inhibitor, tofacitinib, increases filaggrin expression in lesional skin from patients with mycosis fungoides. Taken together, these findings indicate that malignant T cells secrete cytokines that induce skin barrier defects via a JAK1/STAT3-dependent mechanism. As clinical grade JAK inhibitors largely abrogate the negative effect of malignant T cells on skin barrier proteins, our findings suggest that such inhibitors provide novel treatment options for patients with CTCL with advanced disease and a compromised skin barrier.
Assuntos
Linfoma Cutâneo de Células T , Dermatopatias , Neoplasias Cutâneas , Humanos , Proteínas Filagrinas , Qualidade de Vida , Linfoma Cutâneo de Células T/patologia , Dermatopatias/patologia , Linfócitos T/patologia , Citocinas/metabolismo , Neoplasias Cutâneas/patologiaRESUMO
In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.
Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Camundongos , Animais , Lipossomos/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Autoantígenos/metabolismo , Adjuvantes Imunológicos , Imunização , Vacinação , Fenótipo , Camundongos Endogâmicos C57BL , Células Th1RESUMO
Depression has been associated with inflammatory pathophysiological mechanisms, including alterations in amount of circulating immune cells. However, no meta-analysis within the past 20 years have reevaluated the circulating immune cells in blood and cerebrospinal fluid (CSF) from patients with depression compared to healthy controls. The aim of this study was to systematically evaluate the circulating immune cells in blood and CSF from patients with unipolar depression compared to healthy controls. Databases were searched up until February 12, 2021. Data-extraction was performed by two independent reviewers. 104 studies were included in the meta-analysis using fixed and random-effects models. Patients with depression had a significantly higher overall leukocyte count (35 studies; SMD, 0.46; 95% CI: 0.31-0.60, I2 = 68%), higher neutrophil count (24 studies; SMD, 0.52; 95% CI: 0.33-0.71, I2 = 77%) and higher monocyte count (27 studies; SMD, 0.32; 95% CI: 0.11-0.53, I2 = 77%) compared to healthy controls. Leukocyte counts were higher in inpatients, indicating a relation to depression severity. Furthermore, there were significant alterations in several lymphocyte subsets, including higher natural killer cells and T cell subsets. Higher neutrophil/lymphocyte ratio (11 studies; SMD = 0.24; 95% CI: 0.06-0.42, I2 = 73%), CD4/CD8 cell-ratio (26 studies; SMD = 0.14; 95% CI: 0.01-0.28, I2 = 42%) and T helper 17/T regulatory ratio (2 studies; SMD = 1.05; 95% CI: 0.15-1.95, I2 = 86%) were found in patients compared to healthy controls. CSF white cell count was higher in patients compared to controls (3 studies; SMD = 0.20; 95% CI: 0.01-0.38, I2 = 0%). There were no data for CSF cell subsets. This study suggests that there are several blood immune cell alterations in patients with unipolar depression compared to healthy controls, both in major leukocyte subsets and more specialized immune cell subsets.
Assuntos
Transtorno Depressivo , Humanos , NeutrófilosRESUMO
Only few studies on contact allergy in African countries have been published. The aim of the present study was to provide an overview of the most common contact allergens identified by the use of patch tests in African countries based on a review of the existing literature. A total of twenty-four publications from eight African countries were initially identified by search in PubMed. The abstracts and method sections were screened, and 15 studies in which patch tests were actually used to identify the allergen causing the allergic contact dermatitis (ACD) were finally selected. Nickel, cobalt, chromium, fragrance mix and p-tert-butylphenol-formaldehyde resin were the dominating contact allergens responsible for 40%-90% of the positive patch test reactions. This study indicates that a targeted effort directed towards prevention, avoidance and regulation of reliably identified contact allergens could reduce the disease burden of ACD considerable in some African countries.
Assuntos
Alérgenos , Dermatite Alérgica de Contato , Humanos , Alérgenos/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Dermatite Alérgica de Contato/etiologia , Testes do Emplastro/métodos , Níquel , Cobalto , Estudos RetrospectivosRESUMO
The post-translational modification citrullination has been proposed to play a role in the pathogenesis of multiple sclerosis (MS). Myelin basic protein (MBP) is a candidate autoantigen which is citrullinated to a minor extent under physiological conditions and hypercitrullinated in MS. We examined immune cell responses elicited by hypercitrullinated MBP (citMBP) in cultures of mononuclear cells from 18 patients with MS and 42 healthy donors (HDs). The immunodominant peptide of MBP, MBP85-99, containing citrulline in position 99, outcompeted the binding of native MBP85-99 to HLA-DR15, which is strongly linked to MS. Moreover, using the monoclonal antibody MK16 as probe, we observed that B cells and monocytes from HLA-DR15+ patients with MS presented MBP85-99 more efficiently after challenge with citMBP than with native MBP. Both citMBP and native MBP induced proliferation of CD4+ T cells from patients with MS as well as TNF-α production by their B cells and CD4+ T cells, and citrullination of MBP tended to enhance TNF-α secretion by CD4+ T cells from HLA-DR15+ patients. Unlike native MBP, citMBP induced differentiation into Th17 cells in cultures from HDs, while neither form of MBP induced Th17-cell differentiation in cultures from patients with MS. These data suggest a role for citrullination in the breach of tolerance to MBP in healthy individuals and in maintenance of the autoimmune response to MBP in patients with MS.
Assuntos
Esclerose Múltipla , Humanos , Citrulinação , Proteína Básica da Mielina , Células Th17/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of mature T-cell neoplasms characterized by the accumulation of clonal malignant CD4+ T cells in the skin. The most common variant of CTCL, mycosis fungoides (MF ), is confined to the skin in early stages but can be accompanied by extracutaneous dissemination of malignant T cells to the blood and lymph nodes in advanced stages of disease. Sézary syndrome (SS), a leukemic form of disease, is characterized by significant blood involvement. Little is known about the transcriptional and genomic relationship between skin- and blood-residing malignant T cells in CTCL. To identify and interrogate malignant clones in matched skin and blood from patients with leukemic MF and SS, we combine T-cell receptor clonotyping with quantification of gene expression and cell surface markers at the single cell level. Our data reveal clonal evolution at a transcriptional and genetic level within the malignant populations of individual patients. We highlight highly consistent transcriptional signatures delineating skin- and blood-derived malignant T cells. Analysis of these 2 populations suggests that environmental cues, along with genetic aberrations, contribute to transcriptional profiles of malignant T cells. Our findings indicate that the skin microenvironment in CTCL promotes a transcriptional response supporting rapid malignant expansion, as opposed to the quiescent state observed in the blood, potentially influencing efficacy of therapies. These results provide insight into tissue-specific characteristics of cancerous cells and underscore the need to address the patients' individual malignant profiles at the time of therapy to eliminate all subclones.
Assuntos
Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/patologia , Células Cultivadas , Humanos , Linfoma Cutâneo de Células T/genética , Análise de Célula Única , Neoplasias Cutâneas/genética , Transcriptoma , Células Tumorais CultivadasRESUMO
BACKGROUND: CD8+ epidermal-resident memory T (TRM ) cells play central roles in local flare-up responses to experimental contact allergens by inducing massive influx of neutrophils to the epidermis upon allergen challenge. Whether similar immunopathogenic mechanisms are involved in the responses to clinically relevant contact allergens is unknown. METHODS: The immune response to cinnamal, ρ-phenylenediamine (PPD) and methylisothiazolinone (MI) was studied in a well-established mouse model for allergic contact dermatitis that includes formation of TRM cells by ELISA, flow cytometry, fluorescence microscopy analyses and cell depletion protocols. RESULTS: We show that the formation of CD4+ and CD8+ epidermal TRM cells and the inflammatory response are highly allergen-dependent. However, the magnitude of the flare-up responses correlated with the number of epidermal CD8+ TRM cells, CXCL1/CXCL2 release and recruitment of neutrophils to the epidermis. Finally, depletion of CD4+ T cells strongly enhanced the number of epidermal CD8+ TRM cells, the flare-up response and the epidermal infiltration of neutrophils for all allergens. CONCLUSION: As the first, this study demonstrates that clinically relevant contact allergens have the ability to generate pathogenic, epidermal CD8+ TRM cells that recruit neutrophils following re-exposure to the allergen, but that this normally is counteracted by the simultaneous induction of anti-inflammatory CD4+ T cells.
Assuntos
Alérgenos , Dermatite Alérgica de Contato , Camundongos , Animais , Células T de Memória , Linfócitos T CD8-Positivos , Epiderme , Linfócitos T CD4-Positivos , Memória ImunológicaRESUMO
BACKGROUND: The junctional adhesion molecule-like protein (JAML) plays important roles in wound healing and activation of epidermal γδ T cells in mice. Whether JAML plays a role in contact hypersensitivity (CHS), the animal model of allergic contact dermatitis (ACD), is not known. METHODS: To examine the role of JAML in CHS, we used various mouse models of CHS in JAML knockout (KO) and wild-type (WT) mice. Furthermore, the expression of the JAML ligand coxsackievirus and adenovirus receptor (CXADR) on keratinocytes was accessed in vitro and in vivo. RESULTS: JAML KO mice had a diminished inflammatory response during both the sensitization and elicitation phase of CHS and had reduced numbers of CD8+ and CD4+ T cells in the epidermis. Furthermore, interferon γ (IFNγ), interleukin 1ß (IL-1ß) and CXCL10 production were significantly reduced in JAML KO mice during the elicitation phase. We found that CD8+ T cells express JAML and that JAML is essential for rapid flare-up responses to contact allergens. Finally, we show that keratinocytes up-regulate the JAML ligand CXADR following exposure to contact allergens. CONCLUSION: Our study is the first to show a central role of JAML in CHS and reveals a potential new target for the treatment of ACD in humans.
Assuntos
Linfócitos T CD8-Positivos , Dermatite Alérgica de Contato , Humanos , Camundongos , Animais , Moléculas de Adesão Juncional , Ligantes , Epiderme , Camundongos Knockout , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Allergic contact dermatitis (ACD) is an inflammatory disease with a complex pathophysiology in which epidermal-resident memory CD8+ T (TRM ) cells play a key role. The mechanisms involved in the activation of CD8+ TRM cells during allergic flare-up responses are not understood. METHODS: The expression of CD100 and its ligand Plexin B2 on CD8+ TRM cells and keratinocytes before and after allergen exposure was determined by flow cytometry and RT-qPCR. The role of CD100 in the inflammatory response during the challenge phase of ACD was determined in a model of ACD in CD100 knockout and wild-type mice. RESULTS: We show that CD8+ TRM cells express CD100 during homeostatic conditions and up-regulate it following re-exposure of allergen-experienced skin to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene (DNFB). Furthermore, Plexin B2 is up-regulated on keratinocytes following exposure to some contact allergens. We show that loss of CD100 results in a reduced inflammatory response to DNFB with impaired production of IFNγ, IL-17A, CXCL1, CXCL2, CXCL5, and IL-1ß and decreased recruitment of neutrophils to the epidermis. CONCLUSION: Our study demonstrates that CD100 is expressed on CD8+ TRM cells and is required for full activation of CD8+ TRM cells and the flare-up response of ACD.
Assuntos
Dermatite Alérgica de Contato , Animais , Camundongos , Alérgenos , Dermatite Alérgica de Contato/metabolismo , Dinitrofluorbenzeno/metabolismo , Queratinócitos/metabolismo , PeleRESUMO
Sézary syndrome (SS) is a rare and aggressive type of cutaneous T-cell lymphoma, with an abnormal inflammatory response in affected skin. The cytokines IL-1B and IL-18, as key signaling molecules in the immune system, are produced in an inactive form and cleave to the active form by inflammasomes. In this study, we assessed the skin, serum, peripheral mononuclear blood cell (PBMC) and lymph-node samples of SS patients and control groups (healthy donors (HDs) and idiopathic erythroderma (IE) nodes) to investigate the inflammatory markers IL-1B and IL-18 at the protein and transcript expression levels, as potential markers of inflammasome activation. Our findings showed increased IL-1B and decreased IL-18 protein expression in the epidermis of SS patients; however, in the dermis layer, we detected increased IL-18 protein expression. In the lymph nodes of SS patients at advanced stages of the disease (N2/N3), we also detected an enhancement of IL-18 and a downregulation of IL-1B at the protein level. Moreover, the transcriptomic analysis of the SS and IE nodes confirmed the decreased expression of IL1B and NLRP3, whereas the pathway analysis indicated a further downregulation of IL1B-associated genes. Overall, the present findings showed compartmentalized expressions of IL-1B and IL-18 and provided the first evidence of their imbalance in patients with Sézary syndrome.
Assuntos
Interleucina-18 , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Dermatite Esfoliativa/metabolismo , Inflamassomos/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Leucócitos Mononucleares/metabolismo , Síndrome de Sézary/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/metabolismoRESUMO
Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation.
Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Vitamina D/imunologia , Células Cultivadas , Ativação Enzimática/imunologia , Humanos , Immunoblotting , Hibridização In Situ , Fosfolipase C gama/biossíntese , Fosfolipase C gama/imunologia , Receptores de Calcitriol/imunologiaRESUMO
BACKGROUND: Allergic contact dermatitis (ACD) is classically described as a delayed-type hypersensitivity reaction. However, patients often experience flare-ups characterized by itching erythema, edema, and often vesicles occurring within hours after re-exposure of previously sensitized skin to the specific contact allergen. Recent studies have indicated that skin-resident memory T (TRM ) cells play a central role in ACD. However, the pathogenic role of TRM cells in allergen-induced flare-ups is not known. METHODS: By the use of various mouse models and cell depletion protocols, we investigated the role of epidermal TRM cells in flare-up reactions to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene. The inflammatory response was measured by changes in ear thickness, and the cellular composition in epidermis was determined by flow cytometry and confocal microscopy. Finally, adaptive transfer and inhibitors were used to determine the role of TRM cells, neutrophils, and CXCL1/CXCL2 in the response. RESULTS: We show that CD8+ TRM cells initiate massive infiltration of neutrophils in the epidermis within 12 h after re-exposure to the contact allergen. Depletion of neutrophils before re-exposure to the allergen abrogated the flare-up reactions. Furthermore, we demonstrate that CD8+ TRM cells mediate neutrophil recruitment by inducing CXCL1 and CXCL2 production in the skin, and that blockage of the C-X-C chemokine receptor type 1 and 2 inhibits flare-up reactions and neutrophil infiltration. CONCLUSION: As the first, we show that epidermal CD8+ TRM cells cause ACD flare-ups by rapid recruitment of neutrophils to the epidermis.
Assuntos
Dermatite Alérgica de Contato , Neutrófilos , Alérgenos , Animais , Linfócitos T CD8-Positivos , Dermatite Alérgica de Contato/patologia , Humanos , Memória Imunológica , Células T de Memória , CamundongosRESUMO
BACKGROUND: Treatment with antipsychotics is associated with an increased risk of type 2 diabetes mellitus (T2D), and increased levels of inflammatory biomarkers are present in patients with T2D. We previously demonstrated that the glucagon-like peptide-1 receptor agonist liraglutide significantly reduced glucometabolic disturbances and body weight in prediabetic, overweight/obese schizophrenia-spectrum disorder patients treated with clozapine or olanzapine. This study aims to assess the involvement of cytokines in the therapeutic effects of liraglutide. METHODS: Serum concentrations of 10 cytokines (interferon-γ [IFN-γ], tumor necrosis factor-α, interleukin 1ß [IL-1ß], IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, and IL-13) from fasting prediabetic and normal glucose-tolerant (NGT) patients with schizophrenia-spectrum disorders were measured using multiplexed immunoassays. Prediabetic patients were randomized to 16 weeks of treatment with liraglutide or placebo, and cytokines were measured again at the end of the treatment. RESULTS: IFN-γ (1.98 vs 1.17 pg/ml, P = .001), IL-4 (0.02 vs 0.01 pg/ml, P < .001), and IL-6 (0.73 vs 0.46 pg/ml, P < .001) were significantly higher in prediabetic (n = 77) vs NGT patients (n = 31). No significant changes in cytokine levels following treatment with liraglutide (n = 37) vs placebo (n = 40) were found. CONCLUSION: Prediabetic vs NGT patients with schizophrenia treated with clozapine or olanzapine had increased serum levels of several proinflammatory cytokines, further substantiating the link between inflammation and T2D. Treatment with liraglutide did not affect the investigated cytokines. Further testing of these findings in larger numbers of individuals is needed.
Assuntos
Clozapina , Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Esquizofrenia , Biomarcadores , Clozapina/uso terapêutico , Humanos , Hipoglicemiantes/uso terapêutico , Interleucina-4/uso terapêutico , Interleucina-6/uso terapêutico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Olanzapina/uso terapêutico , Estado Pré-Diabético/induzido quimicamente , Estado Pré-Diabético/tratamento farmacológico , Esquizofrenia/tratamento farmacológicoRESUMO
Altered miRNA expressions are assigned pathogenic properties in several cancers including mycosis fungoides and could play a role in the early onset of the disease. The aim of this study was to examine disease-specific miRNA expression in early-stage mycosis fungoides patch and plaque lesions. A quantitative real-time PCR platform of 384 human miRNAs was used to study miRNA expression in 154 diagnostic mycosis fungoides biopsies. A total of 110 miRNAs were significantly differentially expressed (>2-fold, p < 0.05) between plaque lesions and healthy controls, and 90 miRNAs (>2-fold, p < 0.05) differed between patch lesions and healthy controls. Moreover, 13 miRNAs differed in expression between patch and plaque lesions. Early-stage mycosis fungoides exhibited miRNA features that overlapped with those of psoriasis. However, 39 miRNAs, including miR-142-3p, miR-150 and miR-146b, were specific to mycosis fungoides. In conclusion, early-stage mycosis fungoides expresses a distinct miRNA profile, indicating that miRNAs could play a role in the early development of mycosis fungoides.
Assuntos
MicroRNAs , Micose Fungoide , Neoplasias Cutâneas , Biópsia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Micose Fungoide/patologia , Neoplasias Cutâneas/patologiaRESUMO
Epidemiologic studies have shown associations between periodontitis and rheumatoid arthritis (RA), but a causal relationship has not been established. Citrullination of gingival proteins by human peptidylarginine deiminases (PADs) or PAD from Porphyromonas gingivalis has been proposed to generate autoantigens in anti-CCP-positive RA. This study investigated whether the association between periodontitis and RA is influenced by single nucleotide polymorphisms (SNPs) in the genes encoding PAD2 and PAD4 that catalyze aberrant citrullination in RA and often are overexpressed in inflamed gingival connective tissue in subjects with periodontitis. The study included 137 RA patients and 161 controls with self-reported periodontitis. Periodontitis onset preceded RA onset by 13 years on average and was not associated with any of the SNPs investigated. In subjects with periodontitis, carriage of the minor alleles of rs2057094 and rs2235912 in PADI2 significantly increased the risk of RA (odds ratios 1.42 [p = 0.03] and 1.48 [p = 0.02], respectively), and this effect was driven by the anti-CCP-negative RA patients. The minor alleles of these SNPs only increased risk of anti-CCP-positive RA in individuals with periodontitis and a history of smoking. These data suggest that individuals with periodontitis carrying the minor alleles of SNPs rs2057094, rs2076616 and rs2235912 in PADI2 may be at increased risk of RA.
Assuntos
Artrite Reumatoide , Periodontite , Desiminases de Arginina em Proteínas , Anticorpos Antiproteína Citrulinada , Artrite Reumatoide/genética , Autoanticorpos , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Periodontite/complicações , Periodontite/genética , Polimorfismo de Nucleotídeo Único , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismoRESUMO
It has been proposed that CD4 T-cell responses to Staphylococcus aureus (SA) can inadvertently enhance neoplastic progression in models of skin cancer and cutaneous T-cell lymphoma (CTCL). In this prospective study, we explored the effect of transient antibiotic treatment on tumor cells and disease activity in 8 patients with advanced-stage CTCL. All patients experienced significant decrease in clinical symptoms in response to aggressive, transient antibiotic treatment. In some patients, clinical improvements lasted for more than 8 months. In 6 of 8 patients, a malignant T-cell clone could be identified in lesional skin, and a significant decrease in the fraction of malignant T cells was observed following antibiotics but an otherwise unchanged treatment regimen. Immunohistochemistry, global messenger RNA expression, and cell-signaling pathway analysis indicated that transient aggressive antibiotic therapy was associated with decreased expression of interleukin-2 high-affinity receptors (CD25), STAT3 signaling, and cell proliferation in lesional skin. In conclusion, this study provides novel evidence suggesting that aggressive antibiotic treatment inhibits malignant T cells in lesional skin. Thus, we provide a novel rationale for treatment of SA in advanced CTCL.
Assuntos
Antibacterianos/uso terapêutico , Linfoma Cutâneo de Células T/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Idoso , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologiaRESUMO
BACKGROUND: Several cancers, including mycosis fungoides (MF), have reported dysregulation of miR-195-5p. miR-195-5p plays a role in cell cycle regulation in several malignant diseases. OBJECTIVES: This study aimed to investigate: (a) the expression level of miR-195-5p in lesional MF skin biopsies and (b) the potential regulatory roles of miR-195-5p in MF. METHODS: Quantitative real-time polymerase chain reaction (RT-qPCR) was used to determine miR-195-5p expression in MF skin biopsies and cell lines. The effect of miR-195-5p and ADP-ribosylation factor-like protein 2 (ARL2) on cell cycle and apoptosis was measured by flow cytometry assays. Changes in ARL2 expression were determined by RT-qPCR and Western blotting (WB). RESULTS: We found lower expression levels of miR-195-5p in lesional skin from MF patients compared with non-lesional MF skin and skin from healthy volunteers. Additionally, miR-195-5p showed lower expression levels in the skin from patients with disease progression compared with patients with stable disease. In vitro studies showed that overexpression of miR-195-5p induced a cell cycle arrest in G0G1. Using microarray analysis, we identified several genes that were regulated after miR-195-5p overexpression. The most downregulated gene after miR-195-5p mimic transfection was ARL2. RT-qPCR and WB analyses confirmed downregulation of ARL2 following transfection with miR-195-5p mimic. Lastly, transfection with siRNA against ARL2 also induced a G0G1 arrest. CONCLUSION: Upregulation of miR-195-5p in MF inhibits cycle arrest by downregulation of ARL2. miR-195-5p may thus function as a tumor suppressor in MF and low miR-195-5p expression in lesional MF skin may promote disease progression.
Assuntos
Proliferação de Células/genética , Proteínas de Ligação ao GTP/genética , MicroRNAs/metabolismo , Micose Fungoide/genética , Neoplasias Cutâneas/genética , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Micose Fungoide/patologia , Neoplasias Cutâneas/patologiaRESUMO
Some toxigenic bacteria produce protein toxins with carcinogenic signatures, which either directly damage DNA or stimulate signalling pathways related to cancer. So far, however, only a few of them have been proved to favour the induction or progression of cancer. In this work, we report that the Rho-activating Escherichia coli protein toxin, cytotoxic necrotising factor 1 (CNF1), induces epithelial to mesenchymal transition (EMT) in intestinal epithelial cells. EMT is a crucial step in malignant tumour conversion and invasiveness. In the case of CNF1, it occurs by up-regulation of the transcription factors ZEB1 and Snail1, delocalisation of E-cadherin and ß-catenin, activation of the serine/threonine kinase mTOR, accelerated wound healing, and invasion. However, our results highlight that nontransformed epithelial cells entail the presence of inflammatory factors, in addition to CNF1, to acquire a mesenchymal-like behaviour. All this suggests that the surrounding microenvironment, as well as the cell type, dramatically influences the CNF1 ability to promote carcinogenic traits.
Assuntos
Toxinas Bacterianas/farmacologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas de Escherichia coli/farmacologia , Escherichia coli/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular , Células Epiteliais/patologia , Humanos , Serina-Treonina Quinases TOR/metabolismo , beta Catenina/metabolismoRESUMO
BACKGROUND: Mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL), is a lymphoproliferative disorder characterized by proliferation of malignant T cells in a chronic inflammatory environment in the skin. The nature of MF is still not fully understood, but aberrant microRNA (miR) expression and function seem to play an important role in the pathogenesis and disease progression and have been proposed as a putative disease marker. Recent studies have reported aberrant expression of miR-93 in situin MF lesions and linked dysregulated miR-93 expression to advanced stages of MF. However, the pathophysiological role of miR-93 in MF is unknown. OBJECTIVE: Here, we provide the first evidence that miR-93 targets the cell cycle regulator cyclin-dependent kinase inhibitor p21 and promotes growth of malignant T cells in MF. METHODS/RESULTS: Thus, inhibition of miR-93 in MF patient-derived malignant T-cell lines increases expression of p21 and inhibition of malignant proliferation. Notably, treatment with the histone deacetylase inhibitor Vorinostat (SAHA) reduces miR-93 expression and enhances p21 expression in the malignant T cells. Importantly, transfection with an miR-93 mimic partly blocks SAHA-induced p21 expression. CONCLUSIONS: we provide evidence that enhanced expression of the putative oncogenic miR, miR-93, represses the cell cycle inhibitor p21 and promotes proliferation of malignant T cells. Moreover, we demonstrate that SAHA triggers p21 expression - at least partly - through an inhibition of miR-93.