Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(1): 209-224, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35881523

RESUMO

Parkinson's disease is characterized by the gradual appearance of intraneuronal inclusions that are primarily composed of misfolded α-synuclein protein, leading to cytotoxicity and neural death. Recent in vitro and in vivo studies suggest that misfolded α-synuclein may spread transcellularly in a prion-like manner, inducing pathological aggregates in healthy neurons, and is disseminated via secretion of extracellular vesicles. Accordingly, extracellular vesicles derived from brain lysates and CSF of patients with Parkinson's disease were shown to facilitate α-synuclein aggregation in healthy cells. Prompted by the hypothesis of Braak and colleagues that the olfactory bulb is one of the primary propagation sites for the initiation of Parkinson's disease, we sought to investigate the role of extracellular vesicles in the spread of α-synuclein and progression of Parkinson's disease through the olfactory bulb. Extracellular vesicles derived from the CSF of patients diagnosed with Parkinson's disease or with a non-synucleinopathy neurodegenerative disorder were administered intranasally to healthy mice, once daily over 4 days. Three months later, mice were subjected to motor and non-motor tests. Functional impairments were elucidated by histochemical analysis of midbrain structures relevant to Parkinson's disease pathology, 8 months after EVs treatment. Mice treated with extracellular vesicles from the patients with Parkinson's disease displayed multiple symptoms consistent with prodromal and clinical-phase Parkinson's disease such as hyposmia, motor behaviour impairments and high anxiety levels. Furthermore, their midbrains showed widespread α-synuclein aggregations, dopaminergic neurodegeneration, neuroinflammation and altered autophagy activity. Several unconventional pathologies were also observed, such as α-synuclein aggregations in the red nucleus, growth of premature grey hair and astrogliosis. Collectively, these data indicate that intranasally administered extracellular vesicles derived from the CSF of patients with Parkinson's disease can propagate α-synuclein aggregation in vivo and trigger Parkinson's disease-like symptoms and pathology in healthy mice.


Assuntos
Vesículas Extracelulares , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neurônios/metabolismo , Encéfalo/patologia , Vesículas Extracelulares/metabolismo
2.
Stem Cells ; 39(12): 1589-1600, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34520591

RESUMO

Neurological disorders are diseases of the central nervous system (CNS), characterized by a progressive degeneration of cells and deficiencies in neural functions. Mesenchymal stem cells (MSCs) are a promising therapy for diseases and disorders of the CNS. Increasing evidence suggests that their beneficial abilities can be attributed to their paracrine secretion of extracellular vesicles (EVs). Administration of EVs that contain a mixture of proteins, lipids, and nucleic acids, resembling the secretome of MSCs, has been shown to mimic most of the effects of the parental cells. Moreover, the small size and safety profile of EVs provide a number of advantages over cell transplantation. Intranasal (IN) administration of EVs has been established as an effective and reliable way to bypass the blood-brain barrier and deliver drugs to the CNS. In addition to pharmacological drugs, EVs can be loaded with a diverse range of cargo designed to modulate gene expression and protein functions in recipient cells, and lead to immunomodulation, neurogenesis, neuroprotection, and degradation of protein aggregates. In this review, we will explore the proposed physiological pathways by which EVs migrate through the nasal route to the CNS where they can actively target a region of injury or inflammation and exert their therapeutic effects. We will summarize the functional outcomes observed in animal models of neurological diseases following IN treatment with MSC-derived EVs. We will also examine key mechanisms that have been suggested to mediate the beneficial effects of EV-based therapy.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Doenças do Sistema Nervoso , Animais , Vesículas Extracelulares/metabolismo , Imunomodulação , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia
3.
Mol Ther ; 29(3): 937-948, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248248

RESUMO

The CRISPR-Cas system holds great promise in the treatment of diseases caused by genetic variations. The Cas protein, an RNA-guided programmable nuclease, generates a double-strand break at precise genomic loci. However, the use of the clustered regularly interspersed short palindromic repeats (CRISPR)-Cas system to distinguish between single-nucleotide variations is challenging. The promiscuity of the guide RNA (gRNA) and its mismatch tolerance make allele-specific targeting an elusive goal. This review presents a meta-analysis of previous studies reporting position-dependent mismatch tolerance within the gRNA. We also examine the conservativity of the seed sequence, a region within the gRNA with stringent sequence dependency, and propose the existence of a subregion within the seed sequence with a higher degree of specificity. In addition, we summarize the reports on high-fidelity Cas nucleases with improved specificity and compare the standard gRNA design methodology to the single-nucleotide polymorphism (SNP)-derived protospacer adjacent motif (PAM) approach, an alternative method for allele-specific targeting. The combination of the two methods may be advantageous in designing CRISPR-based therapeutics and diagnostics for heterozygous patients.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Edição de Genes , Genoma Humano , Polimorfismo de Nucleotídeo Único , Genômica , Humanos
4.
Nucleic Acids Res ; 48(W1): W340-W347, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32255179

RESUMO

Base editing is a genome-editing approach that employs the CRISPR/Cas system to precisely install point mutations within the genome. A deaminase enzyme is fused to a deactivated Cas and enables transition conversions. The diversified repertoire of base editors provides a wide range of base editing possibilities. However, existing base editors cannot induce transversion substitutions and activate only within a specified region relative to the binding site, thus, they cannot precisely correct every point mutation. Here, we present BE-FF (Base Editors Functional Finder), a novel computational tool that identifies suitable base editors to correct the translated sequence erred by a point mutation. When a precise correction is impossible, BE-FF aims to mutate bystander nucleotides in order to induce synonymous corrections that will correct the coding sequence. To measure BE-FF practicality, we analysed a database of human pathogenic point mutations. Out of the transition mutations, 60.9% coding sequences could be corrected. Notably, 19.4% of the feasible corrections were not achieved by precise corrections but only by synonymous corrections. Moreover, 298 cases of transversion-derived pathogenic mutations were detected to be potentially repairable by base editing via synonymous corrections, although base editing is considered impractical for such mutations.


Assuntos
Edição de Genes/métodos , Mutação Puntual , Software , Sistemas CRISPR-Cas , Variação Genética , Humanos
5.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682594

RESUMO

Cerebral small vessel disease (CSVD) is the second most common cause of stroke and a major contributor to dementia. Manifestations of CSVD include cerebral microbleeds, intracerebral hemorrhages (ICH), lacunar infarcts, white matter hyperintensities (WMH) and enlarged perivascular spaces. Chronic hypertensive models have been found to reproduce most key features of the disease. Nevertheless, no animal models have been identified to reflect all different aspects of the human disease. Here, we described a novel model for CSVD using salt-sensitive 'Sabra' hypertension-prone rats (SBH/y), which display chronic hypertension and enhanced peripheral oxidative stress. SBH/y rats were either administered deoxycorticosteroid acetate (DOCA) (referred to as SBH/y-DOCA rats) or sham-operated and provided with 1% NaCl in drinking water. Rats underwent neurological assessment and behavioral testing, followed by ex vivo MRI and biochemical and histological analyses. SBH/y-DOCA rats show a neurological decline and cognitive impairment and present multiple cerebrovascular pathologies associated with CSVD, such as ICH, lacunes, enlarged perivascular spaces, blood vessel stenosis, BBB permeability and inflammation. Remarkably, SBH/y-DOCA rats show severe white matter pathology as well as WMH, which are rarely reported in commonly used models. Our model may serve as a novel platform for further understanding the mechanisms underlying CSVD and for testing novel therapeutics.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acetato de Desoxicorticosterona , Hipertensão , Substância Branca , Animais , Hemorragia Cerebral/complicações , Doenças de Pequenos Vasos Cerebrais/complicações , Hipertensão/complicações , Imageamento por Ressonância Magnética , Estresse Oxidativo , Ratos , Roedores
6.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232513

RESUMO

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acetato de Desoxicorticosterona , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Anti-Inflamatórios/metabolismo , Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/terapia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos
7.
J Neural Transm (Vienna) ; 127(2): 205-212, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32065333

RESUMO

Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder characterized by striatonigral degeneration and olivopontocerebellar atrophy. The main hallmark of MSA is the aggregation of alpha-synuclein in oligodendrocytes, which contributes to the dysfunction and death of the oligodendrocytes, followed by neurodegeneration. Studies suggested that oxidative-excitatory pathway is associated with the progression of the disease. The aim of the current study was to test this concept by overexpression of excitatory amino acid transporter 2, glutamate dehydrogenase and nuclear factor (erythroid-derived 2)-related factor 2 genes in the striatum of two established mouse models of MSA. To induce the first model, we injected the mitochondrial neurotoxin, 3-nitropropionic acid (3-NP), unilaterally into the right striatum in 2-month-old C57BL/6 male mice. We demonstrate a significant improvement in two drug-induced rotational behavior tests, following unilateral injection the three genes. For the second model, we used transgenic mice expressing the alpha-synuclein gene under the proteolipid protein, in the age of 7 months, boosted with 3-NP to enhance the motor deficits and neurodegeneration. We show that the overexpression of the three genes attenuated the motor-related deficit in the elevated bridge and pole tests. Thus, our study indicates that glutamate excito-oxidative toxicity plays a major role in this MSA model and our gene therapy approach might suggest a novel strategy for MSA treatment.


Assuntos
Comportamento Animal/fisiologia , Modelos Animais de Doenças , Terapia Genética , Atrofia de Múltiplos Sistemas/fisiopatologia , Atrofia de Múltiplos Sistemas/terapia , Animais , Convulsivantes/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/genética , Glutamato Desidrogenase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Nitrocompostos/administração & dosagem , Propionatos/administração & dosagem
8.
Nano Lett ; 19(6): 3422-3431, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30761901

RESUMO

Exosomes, nanovesicles that are secreted by different cell types, enable intercellular communication at local or distant sites. Alhough they have been found to cross the blood brain barrier, their migration and homing abilities within the brain remain unstudied. We have recently developed a method for longitudinal and quantitative in vivo neuroimaging of exosomes based on the superior visualization abilities of classical X-ray computed tomography (CT), combined with gold nanoparticles as labeling agents. Here, we used this technique to track the migration and homing patterns of intranasally administrated exosomes derived from bone marrow mesenchymal stem cells (MSC-exo) in different brain pathologies, including stroke, autism, Parkinson's disease, and Alzheimer's disease. We found that MSC-exo specifically targeted and accumulated in pathologically relevant murine models brains regions up to 96 h post administration, while in healthy controls they showed a diffuse migration pattern and clearance by 24 h. The neuro-inflammatory signal in pathological brains was highly correlated with MSC-exo accumulation, suggesting that the homing mechanism is inflammatory-driven. In addition, MSC-exo were selectively uptaken by neuronal cells, but not glial cells, in the pathological regions. Taken together, these findings can significantly promote the application of exosomes for therapy and targeted drug delivery in various brain pathologies.


Assuntos
Encéfalo/diagnóstico por imagem , Exossomos , Doenças Neurodegenerativas/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Exossomos/química , Ouro/análise , Células-Tronco Mesenquimais/química , Nanopartículas Metálicas/análise , Neuroimagem/métodos , Tomografia Computadorizada por Raios X/métodos
9.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050445

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in the elderly. Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is considered to be an up-stream modulator of AD pathogenesis as active caspase-6 is abundant in neuropil threads, neuritic plaques, and neurofibrillary tangles of AD brains. In order to further elucidate the role of caspase-6 activity in the pathogenesis of AD, we produced a double transgenic mouse model, combining the 5xFAD mouse model of AD with caspase-6 knock out (C6-KO) mice. Behavioral examinations of 5xFAD/C6-KO double transgenic mice showed improved performance in spatial learning, memory, and anxiety/risk assessment behavior, as compared to 5xFAD mice. Hippocampal mRNA expression analyses showed significantly reduced levels of inflammatory mediator TNF-α, while the anti-inflammatory cytokine IL-10 was increased in 5xFAD/C6-KO mice. A significant reduction in amyloid-ß plaques could be observed and immunohistochemistry analyses showed reduced levels of activated microglia and astrocytes in 5xFAD/C6-KO, compared to 5xFAD mice. Together, these results indicate a substantial role for caspase-6 in the pathology of the 5xFAD model of AD and suggest further validation of caspase-6 as a potential therapeutic target for AD.


Assuntos
Doença de Alzheimer/genética , Caspase 6/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Masculino , Memória , Camundongos , Camundongos Knockout , Mutação , Placa Amiloide/genética , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Aprendizagem Espacial
10.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987947

RESUMO

DJ-1 is a redox-sensitive chaperone with reported antioxidant and anti-inflammatory properties in the kidney. The 20 amino acid (aa) peptide ND-13 consists of 13 highly conserved aas from the DJ-1 sequence and a TAT-derived 7 aa sequence that helps in cell penetration. This study aimed to determine if ND-13 treatment prevents the renal damage and inflammation associated with unilateral ureter obstruction (UUO). Male C57Bl/6 and DJ-1-/- mice underwent UUO and were treated with ND-13 or vehicle for 14 days. ND-13 attenuated the renal expression of fibrotic markers TGF-ß and collagen1a1 (Col1a1) and inflammatory markers TNF-α and IL-6 in C57Bl/6 mice. DJ-1-/- mice treated with ND-13 presented similar decreased expression of TNF-α, IL-6 and TGF-ß. However, in contrast to C57Bl/6 mice, ND-13 failed to prevent renal fibrosis or to ameliorate the expression of Col1a1 in this genotype. Further, UUO led to elevated urinary levels of the proximal tubular injury marker neutrophil gelatinase-associated lipocalin (NGAL) in DJ-1-/- mice, which were blunted by ND-13. Our results suggest that ND-13 protects against UUO-induced renal injury, inflammation and fibrosis. These are all crucial mechanisms in the pathogenesis of kidney injury. Thus, ND-13 may be a new therapeutic approach to prevent renal diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Inflamação/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Proteína Desglicase DJ-1/uso terapêutico , Obstrução Ureteral/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Hum Mol Genet ; 26(13): 2462-2471, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402427

RESUMO

Cannabis abuse in adolescence is associated with increased risk of psychotic disorders. Δ-9-tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis. Disrupted-In-Schizophrenia-1 (DISC1) protein is a driver for major mental illness by influencing neurodevelopmental processes. Here, utilizing a unique mouse model based on host (DISC1) X environment (THC administration) interaction, we aimed at studying the pathobiological basis through which THC exposure elicits psychiatric manifestations. Wild-Type and dominant-negative-DISC1 (DN-DISC1) mice were injected with THC (10 mg/kg) or vehicle for 10 days during mid-adolescence-equivalent period. Behavioral tests were conducted to assess exploratory activity (open field test, light-dark box test) and cognitive function (novel object recognition test). Electrophysiological effect of THC was evaluated using acute hippocampal slices, and hippocampal cannabinoid receptor type 1 and brain-derived neurotrophic factor (BDNF) protein levels were measured. Our results indicate that THC exposure elicits deficits in exploratory activity and recognition memory, together with reduced short-term synaptic facilitation and loss of BDNF surge in the hippocampus of DN-DISC mice, but not in wild-type mice. Over-expression of BDNF in the hippocampus of THC-treated DN-DISC1 mice prevented the impairment in recognition memory. The results of this study imply that induction of BDNF following adolescence THC exposure may serve as a homeostatic response geared to maintain proper cognitive function against exogenous insult. The BDNF surge in response to THC is perturbed in the presence of mutant DISC1, suggesting DISC1 may be a useful probe to identify biological cascades involved in the neurochemical, electrophysiological, and behavioral effects of cannabis related psychiatric manifestations.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dronabinol/efeitos adversos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Adolescente , Animais , Animais Recém-Nascidos , Cannabis/efeitos adversos , Cognição/efeitos dos fármacos , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Dronabinol/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transtornos Psicóticos
12.
Stem Cells ; 35(8): 1867-1880, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28589621

RESUMO

Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Per journal style, most nonstandard abbreviations must be used at least two times in the abstract to be retained; NTF was used once and thus has been deleted. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials. Stem Cells 2017;35:1867-1880.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Doenças Neurodegenerativas/terapia , Animais , Humanos , Imunomodulação , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/fisiopatologia
13.
Hum Mol Genet ; 24(9): 2604-14, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25616965

RESUMO

Over the past decade, increasing evidence has implied a significant connection between caspase-6 activity and the pathogenesis of Huntington's disease (HD). Consequently, inhibiting caspase-6 activity was suggested as a promising therapeutic strategy to reduce mutant Huntingtin toxicity, and to provide protection from mutant Huntingtin-induced motor and behavioral deficits. Here, we describe a novel caspase-6 inhibitor peptide based on the huntingtin caspase-6 cleavage site, fused with a cell-penetrating sequence. The peptide reduces mutant Huntingtin proteolysis by caspase-6, and protects cells from mutant Huntingtin toxicity. Continuous subcutaneous administration of the peptide protected pre-symptomatic BACHD mice from motor deficits and behavioral abnormalities. Moreover, administration of the peptide in an advanced disease state resulted in the partial recovery of motor performance, and an alleviation of depression-related behavior and cognitive deficits. Our findings reveal the potential of substrate-based caspase inhibition as a therapeutic strategy, and present a promising agent for the treatment of HD.


Assuntos
Caspase 6/metabolismo , Inibidores de Caspase/farmacologia , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Peptídeos/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Inibidores de Caspase/administração & dosagem , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Feminino , Proteína Huntingtina , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Peptídeos/administração & dosagem
14.
Epilepsia ; 58(4): 586-596, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166388

RESUMO

OBJECTIVE: Epilepsy affects 60 million people worldwide. Despite the development of antiepileptic drugs, up to 35% of patients are drug refractory with uncontrollable seizures. Toll-like receptors (TLRs) are central components of the nonspecific innate inflammatory response. Because TLR3 was recently implicated in neuronal plasticity, we hypothesized that it may contribute to the development of epilepsy after status epilepticus (SE). METHODS: To test the involvement of TLR3 in epileptogenesis, we used the pilocarpine model for SE in TLR3-deficient mice and their respective wild-type controls. In this model, a single SE event leads to spontaneous recurrent seizures (SRS). Two weeks after SE, mice were implanted with wireless electroencephalography (EEG) transmitters for up to 1 month. The impact of TLR3 deficiency on SE was assessed using separate cohorts of mice regarding EEG activity, seizure progression, hippocampal microglial distribution, and expression of the proinflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)ß. RESULTS: Our data indicate that TLR3 deficiency reduced SRS, microglial activation, and the levels of the proinflammatory cytokines TNFα and IFNß, and increased survival following SE. SIGNIFICANCE: This study reveals novel insights into the pathophysiology of epilepsy and the contribution of TLR3 to disease progression. Our results identify the TLR3 pathway as a potential future therapeutic target in SE.


Assuntos
Convulsivantes/toxicidade , Epilepsia/induzido quimicamente , Epilepsia/genética , Pilocarpina/toxicidade , Receptor 3 Toll-Like/deficiência , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/mortalidade , Epilepsia/patologia , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Receptor 3 Toll-Like/genética
15.
Int J Mol Sci ; 18(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763002

RESUMO

Neuroinflammation contributes to amyotrophic lateral sclerosis (ALS) progression. TLR4, a transmembrane protein that plays a central role in activation of the innate immune system, has been shown to induce microglial activation in ALS models. TLR4 is up-regulated in the spinal cords of hSOD1G93A mice. We aimed to examine the effects of specific TLR4 inhibition on disease progression and survival in the hSOD1G93A mouse model of ALS. Immunologic effect of TLR4 inhibition in vitro was measured by the effect of TAK-242 treatment on LPS-induced splenocytes proliferation. hSOD1G93A transgenic mice were treated with TAK-242, a selective TLR4 inhibitor, or vehicle. Survival, body weight, and motor behavior were monitored. To evaluate in vivo immunologic modifications associated with TAK-242 treatment, we measured serum IL-1ß in the plasma, as well as IL-1ß and TNF-α mRNAs in the spinal cord in wild-type mice and in TAK-242-treated and vehicle-treated early symptomatic hSOD1G93A mice. Immunohistochemical analysis of motor neurons, astrocytes, and microglial reactivity in the spinal cords were performed on symptomatic (100 days old) TAK-242-treated and vehicle-treated hSOD1G93A mice. In vitro, splenocytes taken from 100 days old hSOD1G93A mice showed significantly increased proliferation when exposed to LPS (p = 0.0002), a phenomenon that was reduced by TAK-242 (p = 0.0179). TAK-242 treatment did not attenuate body weight loss or significantly affect survival. However, TAK-242-treated hSOD1G93A mice showed temporary clinical delay in disease progression evident in the ladder test and hindlimb reflex measurements. Plasma IL-1ß levels were significantly reduced in TAK-242-treated compared to vehicle-treated hSOD1G93A mice (p = 0.0023). TAK-242 treatment reduced spinal cord astrogliosis and microglial activation and significantly attenuated spinal cord motor neuron loss at early disease stage (p = 0.0259). Compared to wild-type animals, both IL-1ß and TNF-α mRNAs were significantly upregulated in the spinal cords of hSOD1G93A mice. Spinal cord analysis in TAK-242-treated hSOD1G93A mice revealed significant attenuation of TNF-α mRNA (p = 0.0431), but no change in IL-1ß mRNA. TLR4 inhibition delayed disease progression, attenuated spinal cord astroglial and microglial reaction, and reduced spinal motor neuron loss in the ALS hSOD1G93A mouse model. However, this effect did not result in increased survival. To our knowledge, this is the first report on TAK-242 treatment in a neurodegenerative disease model. Further studies are warranted to assess TLR4 as a therapeutic target in ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Atividade Motora , Medula Espinal/patologia , Sulfonamidas/uso terapêutico , Receptor 4 Toll-Like/antagonistas & inibidores , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interleucina-1beta/sangue , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Atividade Motora/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Baço/patologia , Sulfonamidas/farmacologia , Superóxido Dismutase-1/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
16.
NMR Biomed ; 27(7): 774-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24764262

RESUMO

Nanoparticles (NPs) have great potential to increase the diagnostic capacity of many imaging modalities. MRI is currently regarded as the method of choice for the imaging of deep tissues, and metal ions, such as calcium ions (Ca(2+)), are essential ingredients for life. Despite the tremendous importance of Ca(2+) for the well-being of living systems, the noninvasive determination of the changes in Ca(2+) levels in general, and extracellular Ca(2+) levels in particular, in deep tissues remains a challenge. Here, we describe the preparation and contrast mechanism of a flexible easy to prepare and selective superparamagnetic iron oxide (SPIO) NPs for the noninvasive determination of changes in extracellular Ca(2+) levels using conventional MRI. We show that SPIO NPs coated with monodisperse and purified alginate, having a specific molecular weight, provide a tool to selectively determine Ca(2+) concentrations in the range of 250 µm to 2.5 mm, even in the presence of competitive ions. The alginate-coated magnetic NPs (MNPs) aggregate in the presence of Ca(2+) , which, in turn, affects the T2 relaxation of the water protons in their vicinity. The new alginate-coated SPIO NP formulations, which have no effect on cell viability for 24 h, allow the detection of Ca(2+) levels secreted from ischemic cell cultures and the qualitative examination of the change in extracellular Ca(2+) levels in vivo. These results demonstrate that alginate-coated MNPs can be used, at least qualitatively, as a platform for the noninvasive MRI determination of extracellular Ca(2+) levels in myriad in vitro and in vivo biomedical applications.


Assuntos
Alginatos/química , Cálcio/análise , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Animais , Sobrevivência Celular , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Luz , Masculino , Camundongos Endogâmicos C57BL , Ratos Wistar , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Água
17.
Neurotherapeutics ; 21(2): e00335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368172

RESUMO

There is currently no disease-modifying therapy for Huntington's disease (HD). We recently described a small molecule, MK-28, which restored homeostasis in HD models by specifically activating PKR-like ER kinase (PERK). This activation boosts the unfolded protein response (UPR), thereby reducing endoplasmic reticulum (ER) stress, a central cytotoxic mechanism in HD and other neurodegenerative diseases. Here, we have tested the long-term effects of MK-28 in HD model mice. R6/2 CAG (160) mice were treated by lifetime intraperitoneal injections 3 times a week. CatWalk measurements of motor function showed strong improvement compared to untreated mice after only two weeks of MK-28 treatment and continued with time, most significantly at 1 â€‹mg/kg MK-28, approaching WT values. Seven weeks treatment significantly improved paw grip strength. Body weight recovered and glucose levels, which are elevated in HD mice, were significantly reduced. Treatment with another PERK activator, CCT020312 at 1 â€‹mg/kg, also caused amelioration, consistent with PERK activation. Lifespan, measured in more resilient R6/2 CAG (120) mice with daily IP injection, was much extended by 16 days (20%) with 0.3 â€‹mg/kg MK-28, and by 38 days (46%) with 1 â€‹mg/kg MK-28. No toxicity, measured by weight, blood glucose levels and blood liver function markers, was detectable in WT mice treated for 6 weeks with 6 â€‹mg/kg MK-28. Boosting of PERK activity by long-term treatment with MK-28 could be a safe and promising therapeutic approach for HD.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Huntington/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático
18.
Glia ; 61(3): 312-26, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23280929

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a fatal, rapidly progressive, neurodegenerative disease caused by motor neuron degeneration. Despite extensive efforts, the underlying cause of ALS and the path of neurodegeneration remain elusive. Astrocyte activation occurs in response to central nervous system (CNS) insult and is considered a double edged sword in many pathological conditions. We propose that reduced glutamatergic and trophic response of astrocytes to activation may, over time, lead to accumulative CNS damage, thus facilitating neurodegeneration. We found that astrocytes derived from the SOD1(G93A) ALS mouse model exhibit a reduced glutamatergic and trophic response to specific activations compared to their wild-type counterparts. Wild-type astrocytes exhibited a robust response when activated with lipopolysaccharide (LPS), G5 or treated with ceftriaxone in many parameters evaluated. These parameters include increased expression of GLT-1 and GLAST the two major astrocytic glutamate transporters, accompanied by a marked increase in the astrocytic glutamate clearance and up-regulation of neurtrophic factor expression. However, not only do un-treated SOD1(G93A) astrocytes take up glutamate less efficiently, but in response to activation they show no further increase in any of the glutamatergic parameters evaluated. Furthermore, activation of wild-type astrocytes, but not SOD1(G93A) astrocytes, improved their ability to protect the motor neuron cell line NSC-34 from glutamate induced excitotoxicity. Our data indicates that altered astrocyte activation may well be pivotal to the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Ceftriaxona/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Regulação para Cima/efeitos dos fármacos
19.
Magn Reson Med ; 68(3): 794-806, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22128033

RESUMO

Conventional diffusion MRI methods are mostly capable of portraying microarchitectural elements such as fiber orientation in white matter from detection of diffusion anisotropy, which arises from the coherent organization of anisotropic compartments. Double-pulsed-field-gradient MR methods provide a means for obtaining microstructural information such as compartment shape and microscopic anisotropies even in scenarios where macroscopic organization is absent. Here, we apply angular double-pulsed-gradient-spin-echo MRI in the rat brain both ex vivo and in vivo for the first time. Robust angular dependencies are detected in the brain at long mixing time (t(m) ). In many pixels, the oscillations seem to originate from residual directors in randomly oriented media, i.e., from residual ensemble anisotropy, as corroborated by quantitative simulations. We then developed an analysis scheme that enables one to map of structural indices such as apparent eccentricity (aE) and residual phase (φ) that enables characterization of the rat brain in general, and especially the rat gray matter. We conclude that double-pulsed-gradient-spin-echo MRI may in principle become important in characterizing gray matter morphological features and pathologies in both basic and applied neurosciences.


Assuntos
Algoritmos , Encéfalo/citologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neurônios/citologia , Reconhecimento Automatizado de Padrão/métodos , Animais , Anisotropia , Aumento da Imagem/métodos , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
20.
Cytotherapy ; 14(1): 45-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22040110

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSC) may be useful in a range of clinical applications. The placenta has been suggested as an abundant, ethically acceptable, less immunogenic and easily accessible source of MSC. The aim of this study was to evaluate the capacity of induced placental MSC to differentiate into neurotrophic factor-producing cells (NTF) and their protective effect on neuronal cells. METHODS: MSC were isolated from placentas and characterized by fluorescence-activated cell sorting (FACS). The cells underwent an induction protocol to differentiate them into NTF. Analysis of the cellular differentiation was done using polymerase chain reactions (PCR), immunocytochemical staining and enzyme-linked immunosorbent assays (ELISA). Conditioned media from placental MSC (PL-MSC) and differentiated MSC (PL-DIFF) were collected and examined for their ability to protect neural cells. RESULTS: The immunocytochemical studies showed that the cells displayed typical MSC membrane markers. The cells differentiated into osteoblasts and adipocytes. PCR and immunohistology staining demonstrated that the induced cells expressed typical astrocytes markers and neurotrophic factors. Vascular endothelial growth factor (VEGF) levels were higher in the conditioned media from PL-DIFF compared with PL-MSC, as indicated by ELISA. Both PL-DIFF and PL-MSC conditioned media markedly protected neural cells from oxidative stress induced by H(2)O(2) and 6-hydroxydopamine. PL-DIFF conditioned medium had a superior effect on neuronal cell survival. Anti-VEGF antibodies (Bevacizumab) reduced the protective effect of the conditioned media from differentiated and undifferentiated MSC. CONCLUSIONS: This study has demonstrated a neuroprotective effect of MSC of placental origin subjected to an induction differentiation protocol. These data offer the prospect of using placenta as a source for stem cell-based therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/biossíntese , Neurônios/metabolismo , Estresse Oxidativo , Placenta/citologia , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular , Separação Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gravidez , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA