Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt A): 116435, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270122

RESUMO

Benzene (B), toluene (T), ethylbenzene (E), and xylenes (X) are petrochemicals vital in various industrial and commercial processing but identified as priority pollutants due to their high toxicity. The objective of this study was to investigate the toxicological nature of BTEX mixtures under controlled laboratory aquatic conditions using sulfur-oxidizing bacteria (SOB). Results from individual BTEX tests demonstrated that the order of toxicity among BTEX was X ≥ E > T > B. Comparisons of dose-effect curves for BTEX suggest that the biochemical mode of action of B in SOB was different from those of T, E, and X. Toxicological interactions of BTEX in mixtures were studied using concentration addition (CA), independent action (IA), and combination index (CI)-isobologram models. The CI model approximated the actual toxicity of BTEX mixtures better than the CA and IA models. In most cases, BTEX induced synergistic interactions in mixtures. However, in some B-containing mixtures, antagonism was observed at low effective levels. The effective level (fa)-CI plots and polygonograms illustrate that synergistic interactions of BTEX became stronger with an increase in effective levels. In addition, ternary and quaternary mixtures were found to provoke stronger synergism than binary mixtures. The present study suggests that the CI-isobologram model is a suitable means to evaluate diverse toxicological interactions of contaminants in mixtures.


Assuntos
Derivados de Benzeno , Xilenos , Biodegradação Ambiental , Xilenos/toxicidade , Derivados de Benzeno/toxicidade , Tolueno/toxicidade , Benzeno/toxicidade , Enxofre , Bactérias , Oxirredução
2.
J Environ Manage ; 336: 117616, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934665

RESUMO

A direct contact bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) based on inhibition of gas production was deployed to assess the toxicity of naturally contaminated field soils and soils artificially contaminated with heavy metals. Test procedure producing optimal conditions responsible for maximum gas production was 0.5 mL test culture, 1 g soil sample, 80 RPM, and 48 h reaction time. Similarly, the concentrations which generated a 50% reduction in gas production by TUDB for the tested heavy metals were 3.01 mg/kg Cr6+; 15.30 mg/kg Ni2+;15.50 mg/kg Cu2+;16.60 mg/kg Ag+; 20.60 mg/kg As3+; 32.80 mg/kg Hg2+; 54.70 mg/kg Cd2+; and 74.0 mg/kg Pb2+. Because soil toxicity is usually influenced by various physicochemical characteristics, ten reference soils were used to determine the toxicity threshold for evaluating the toxicity of naturally contaminated field soils. All eight contaminated soils were toxic to the TUDB bioassay because their levels of inhibition ranged between 72% and 100% and exceeded the determined toxicity threshold of 10%. Compared to other direct contact assays, the newly developed assay TUDB proved to be very robust, producing highly sensitive data while the different soil physicochemical properties exerted minimal influence on the gas production activity of TUDB. Additionally, the simplicity of the developed methodology coupled with the elimination of pretreatment procedures such as elutriation, and ability to perform generate sensitive data in turbid and highly colored samples makes it, cost-effective, and easily adaptable for the assessment of heavy metal and field contaminated soils when compared with other conventional assays which require sophisticated instrumentation and prolonged testing procedures and times.


Assuntos
Metais Pesados , Poluentes do Solo , Tiossulfatos , Metais Pesados/química , Poluição Ambiental , Solo/química , Bactérias , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Monitoramento Ambiental/métodos
3.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298824

RESUMO

Microbial fuel cells (MFCs) seem to have emerged in recent years to degrade the organic pollutants from wastewater. The current research also focused on phenol biodegradation using MFCs. According to the US Environmental Protection Agency (EPA), phenol is a priority pollutant to remediate due to its potential adverse effects on human health. At the same time, the present study focused on the weakness of MFCs, which is the low generation of electrons due to the organic substrate. The present study used rotten rice as an organic substrate to empower the MFC's functional capacity to degrade the phenol while simultaneously generating bioenergy. In 19 days of operation, the phenol degradation efficiency was 70% at a current density of 17.10 mA/m2 and a voltage of 199 mV. The electrochemical analysis showed that the internal resistance was 312.58 Ω and the maximum specific capacitance value was 0.00020 F/g on day 30, which demonstrated mature biofilm production and its stability throughout the operation. The biofilm study and bacterial identification process revealed that the presence of conductive pili species (Bacillus genus) are the most dominant on the anode electrode. However, the present study also explained well the oxidation mechanism of rotten rice with phenol degradation. The most critical challenges for future recommendations are also enclosed in a separate section for the research community with concluding remarks.


Assuntos
Fontes de Energia Bioelétrica , Humanos , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Oxirredução , Fenol , Fenóis , Eletrodos , Eletricidade
4.
J Environ Manage ; 321: 115930, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994967

RESUMO

The present study used a bioassay of immobilized microalgae (Chlorella vulgaris) via direct contact to assess the toxicity of eleven uncontaminated (reference) and five field contaminated soils with various physicochemical properties and contamination. Photosynthetic oxygen concentration in the headspace of the test kit by Chlorella vulgaris in the reference soils ranged between 12.93% and 14.80% and only 2.54%-7.14% in the contaminated soils, respectively. Inherent test variability (CVi) values ranged between 2.90% and 9.04%; variation due to soil natural properties (CVrs) ranged between 0.33% and 13.0%; and minimal detectable difference (MDD) values ranged from 4.69% to 11.6%. A computed toxicity threshold of 15% was established for microalgae soil toxicity tests based on calculations of the maximal tolerable inhibition (MTI). All contaminated soils were considered toxic to microalgae because their levels of inhibition ranged between 39.5% and 82.9%, exceeding the 15% toxicity threshold. It can be concluded that the elevated concentrations of heavy metals and organic contaminants in the contaminated soils induced the higher inhibitory levels. Overall, direct contact soil toxicity tests using immobilized microalgae provided coherent and repeatable data and can be utilized as a simple and suitable tool for the toxicity testing of contaminated field soils.


Assuntos
Chlorella vulgaris , Metais Pesados , Microalgas , Poluentes do Solo , Bioensaio , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
J Environ Manage ; 279: 111625, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33293163

RESUMO

The Fenton oxidation process was applied to biologically treated swine wastewater (BSWW) for the removal of TOC and color constituents after coagulation with FeCl3. Optimizing of operational variables such as FeSO4 and H2O2 doses was achieved by the response surface method (RSM). Statistical analysis led to the conclusion that FeSO4 is the more important than H2O2 in the removal of TOC. However, H2O2 plays a more significant role than FeSO4 in color removal. The optimal conditions for effective removal of TOC and color from swine wastewater were derived by using process optimization. The experimental results show that overall removal of TOC and color is 76.7% and 98%, respectively, when optimal conditions of 800 mg/L (FeSO4) and 5207 mg/L (H2O2) at 120 min were used. Furthermore, the optimization model produces a desirability value of 0.980 that verifies the optimal conditions. Finally, it is observed that removal of undesirable compounds follows a pseudo-first order and pseudo-second order kinetics model with high R2 values of 0.99 for both TOC and color removal, respectively. Statistical analysis and process optimization show that the employed model may determine conditions conducive to the effective removal of TOC and color from swine wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Cor , Peróxido de Hidrogênio , Oxirredução , Suínos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 277: 111467, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091785

RESUMO

In response to the ever-increasing need for monitoring-based process control of wastewater treatment plants, an online applicable respirometer shows great promise for real-time measurement of oxygen uptake rate (OUR) and biochemical oxygen demand (BOD) measurements as a surrogate of the biodegradability of wastewater. Here, we have developed a photosensor-assisted real-time respirometric system equipped with bubble counting sensors for accurate measurement of microbial oxygen consumption in a bottle. This system can measure OUR and BOD in a bottle equipped with a tube containing NaOH solution to absorb carbon dioxide and supplied with continuous atmospheric oxygen to the bottle, which reliably supplies non-limiting dissolved oxygen (DO) for aerobic biodegradation even at high organic loads. These technical improvements allow a sensitive and rapid analytical tool offering real-time profiles of oxygen uptake rate as well as BOD measurements with an extended measurable range (0-420 mg O2/L), enabling significant reduction or elimination of dilution steps. The respirometric system was used to elucidate the biodegradable kinetics of domestic and swine wastewaters as a function of the type and concentration of organic matters, depending on source characteristics including rapidly or slowly oxidizable organic substances by bacteria. Compared with conventional and manometric BOD methods, our method is reliable and accurate.


Assuntos
Biocombustíveis , Monitoramento Biológico , Animais , Biodegradação Ambiental , Oxigênio/análise , Suínos , Águas Residuárias
7.
Environ Technol ; 35(9-12): 1491-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701948

RESUMO

A freshwater microalga Chlamydomonas mexicana was grown on municipal wastewater with different levels of salinity up to 400 mmol/L NaCl, and the biochemical properties were characterized after 10 days of cultivation. C. mexicana showed the higher specific growth rates for 100 and 200mmol/L NaCl. Nitrogen was completely removed within 10 days as a result of algal growth promoted by the addition of 200-400 mmol/L NaCl. Phosphorus removal increased from 77-84% as the concentration of NaCI increased from 100 to 400 mmol/L. The highest removal of total inorganic carbon (66%) was obtained with the addition of 200 mmol/L NaCl. The lipid content increased from 17% to 38% as the concentration of NaCl increased from 0 to 400mmol/L. The total fatty acid content and glycerol yield of C. mexicana increased 1.8- and 4-fold in wastewater amended with NaCl, respectively. Fatty acids accumulated in the algal biomass were mainly composed of palmitic (27-29%), y-linolenic (27-30%), and linolelaidic acids (16-18%). The optimal condition for fatty acids production in C. mexicana was observed when the municipal wastewater was amended with 100-200 mmol/L NaCl with a simultaneous removal of nutrients.


Assuntos
Biocombustíveis , Chlamydomonas/crescimento & desenvolvimento , Salinidade , Águas Residuárias/microbiologia , Biomassa , Chlamydomonas/metabolismo , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Metabolismo dos Lipídeos , Cloreto de Sódio
8.
Chemosphere ; 352: 141341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307327

RESUMO

Granular activated carbon (GAC) has been widely used at the anode of a microbial fuel cell (MFC) to enhance anode performance due to its outstanding capacitance property. To the best of our knowledge, there haven't been any studies on GAC in the cathode for biofilm development and nitrate reduction in MFC. In this study, by adding GAC to biocathode, we investigated the impact of different GAC amounts and stirring speeds on power generation and nitrate reduction rate in MFC. The denitrification rate was found to be nearly two-times higher in MFCs with GAC (0.046 ± 0.0016 kg m-3 d-1) compared to that deprived of GAC (0.024 ± 0.0012 kg m-3 d-1). The electrotrophic denitrification has produced a maximum power density of 37.6 ± 4.8 mW m-2, which was further increased to 79.2 ± 7.4 mW m-2 with the amount of GAC in the biocathode. A comparative study performed with chemical catalyst (Pt carbon with air sparging) cathode and GAC biocathode showed that power densities produced with GAC biocathode were close to that with Pt cathode. Cyclic voltammetry analysis conducted at 10 mV s-1 between -0.9 V and +0.3 V (vs. Ag/AgCl) showed consistent reduction peaks at -0.6V (Ag/AgCl) confirming the reduction reaction in the biocathode. This demonstrates that the GAC biocathode used in this research is effective at producing power density and denitrification in MFC. Our belief that the nitrate reduction was caused by the GAC biocathode in MFC was further strengthened when SEM analysis showing bacterial aggregation and biofilm formation on the surface of GAC. The GAC biocathode system described in this research may be an excellent substitute for MFC's dual functions of current generation and nitrate reduction.


Assuntos
Fontes de Energia Bioelétrica , Nitratos/química , Carvão Vegetal , Desnitrificação , Compostos Orgânicos , Eletrodos
9.
Chemosphere ; 352: 141403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368967

RESUMO

High concentrations of metals and sulfates in acid mine drainage (AMD) are the cause of the severe environmental hazard that mining operations pose to the surrounding ecosystem. Little study has been conducted on the cost-effective biological process for treating high AMD. The current research investigated the potential of the proposed carbon source and sulfate reduction bacteria (SRB) culture in achieving the bioremediation of sulfate and heavy metals. This work uses individual and combinatorial bioaugmentation and bio-stimulation methods to bioremediate acid-mine-influenced groundwater in batch microcosm experiments. Bioaugmentation and bio-stimulation methods included pure culture SRB (Desulfovibrio vulgaris) and microsized oil droplet (MOD) by emulsifying corn oil. The research tested natural attenuation (T 1), bioaugmentation (T2), biostimulation (T3), and bioaugmentation plus biostimulation (T4) for AM-contaminated groundwater remediation. Bioaugmentation and bio-stimulation showed the greatest sulfate reduction (75.3%) and metal removal (95-99%). Due to carbon supply scarcity, T1 and T2 demonstrated 15.7% and 27.8% sulfate reduction activities. Acetate concentrations in T3 and T4 increased bacterial activity by providing carbon sources. Metal bio-precipitation was substantially linked with sulfate reduction and cell growth. SEM-EDS study of precipitates in T3 and T4 microcosm spectra indicated peaks for S, Cd, Mn, Cu, Zn, and Fe, indicating metal-sulfide association for metal removal precipitates. The MOD provided a constant carbon source for indigenous bacteria, while Desulfovibrio vulgaris increased biogenic sulfide synthesis for heavy metal removal.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Metais Pesados , Biodegradação Ambiental , Óleo de Milho , Zea mays , Ecossistema , Bactérias , Ácidos , Sulfatos , Carbono , Sulfetos
10.
Bioresour Technol ; 387: 129665, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37573977

RESUMO

In this study, iron/iron-magnesium (Fe/Fe-Mg) additives were prepared through the impregnation of granular activated carbon (GAC) with iron and iron-magnesium (GFM) to enhance biohydrogen production. The microscope observation and chemical analysis revealed that the GAC matrixes were well infused with Fe/Fe-Mg, while the X-ray diffraction analysis revealed the species of metal formed on the GAC as Fe3+ and MgH2. The synergistic effect of Fe and Mg in GFM allowed it for a shorter delay time and higher hydrogen production rate than other additives, indicating their possible use in stimulating the fast release of hydrogen in anaerobic digestion. The co-metabolites analysis revealed that additives ensured biohydrogen production through the different pathways. The plausible mechanisms were through hydrogenases ensured by Fe3+ and hydrolysis by MgH2. GFM gave the best organic matter and nutrient removal efficiency to outperform other additives, suggesting its ability for biohydrogen synthesis and simultaneous wastewater treatment.


Assuntos
Ferro , Águas Residuárias , Magnésio , Carvão Vegetal , Hidrogênio
11.
Bioresour Technol ; 369: 128413, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462762

RESUMO

The inherent recalcitrance of lignocellulosic biomass is a significant barrier to efficient lignocellulosic biorefinery owing to its complex structure and the presence of inhibitory components, primarily lignin. Efficient biomass pretreatment strategies are crucial for fragmentation of lignocellulosic biocomponents, increasing the surface area and solubility of cellulose fibers, and removing or extracting lignin. Conventional pretreatment methods have several disadvantages, such as high operational costs, equipment corrosion, and the generation of toxic byproducts and effluents. In recent years, many emerging single-step, multi-step, and/or combined physicochemical pretreatment regimes have been developed, which are simpler in operation, more economical, and environmentally friendly. Furthermore, many of these combined physicochemical methods improve biomass bioaccessibility and effectively fractionate ∼96 % of lignocellulosic biocomponents into cellulose, hemicellulose, and lignin, thereby allowing for highly efficient lignocellulose bioconversion. This review critically discusses the emerging physicochemical pretreatment methods for efficient lignocellulose bioconversion for biofuel production to address the global energy crisis.


Assuntos
Biocombustíveis , Lignina , Lignina/química , Biomassa , Celulose , Hidrólise
12.
Bioresour Technol ; 369: 128380, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427768

RESUMO

Lignocellulosic and algal biomasses are known to be vital feedstocks to establish a green hydrogen supply chain toward achieving a carbon-neutral society. However, one of the most pressing issues to be addressed is the low digestibility of these biomasses in biorefinery processes, such as dark fermentation, to produce green hydrogen. To date, various pretreatment approaches, such as physical, chemical, and biological methods, have been examined to enhance feedstock digestibility. However, neither systematic reviews of pretreatment to promote biohydrogen production in dark fermentation nor economic feasibility analyses have been conducted. Thus, this study offers a comprehensive review of current biomass pretreatment methods to promote biohydrogen production in dark fermentation. In addition, this review has provided comparative analyses of the technological and economic feasibility of existing pretreatment techniques and discussed the prospects of the pretreatments from the standpoint of carbon neutrality and circular economy.


Assuntos
Hidrogênio , Lignina , Biomassa , Fermentação , Plantas , Biocombustíveis
13.
Chemosphere ; 311(Pt 2): 137003, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309059

RESUMO

Atmospheric non-thermal dielectric barrier discharge (DBD) plasma has gained considerable attention due to its cost-efficiency, environmental friendliness, and simplicity. However, certain deficiencies restrict its broad application. Herein, the DBD plasma was used to disrupt three model pharmaceutically active compounds (PhACs), sulfamethoxazole (SMX), ibuprofen (IBP), and norfloxacin (NFX), by varying parameters, such as gas type (Ar, N2, O2, and air) and flow rate (1-4 L min-1). The air plasma discharge had the highest degradation efficiency, and the air flow rate was optimized at 2 L min-1. However, only 10% of IBP was removed by the sole plasma, whereas NFX and SMX were entirely removed after 30 min. Since the air plasma discharge generates reactive oxygen and nitrogen species in a chained reaction, the remaining NO2- and NO3- in the aqueous phase were problematic. Therefore, by coupling plasma with electrolysis using Cu/reduced Cu nanowire (R-CuNw) as the anode/cathode, all three PhACs were removed within 30 min, and NO2- and NO3- were completely reduced to NH3 with cathodic reduction. Moreover, the electrical energy per order (EEO, 0.04 kWh L-1) and treatment cost (0.003 USD L-1) were much lower than those of the single system. This system demonstrates great potential for water remediation, and the production of NH3 as a value-added by-product remarkably improves its practicality and is of great importance in agriculture and energy-related industries.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Dióxido de Nitrogênio , Sulfametoxazol , Norfloxacino , Oxigênio , Água , Eletrólise , Poluentes Químicos da Água/análise
14.
J Hazard Mater ; 452: 131197, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989782

RESUMO

The aim of this study was to investigate the effects of hydrophilic sulfur-modified nanoscale zero-valent iron (S-nZVI) as a biocatalyst for denitrification. We found that the denitrifying bacteria Cupriavidus necator (C. necator) promoted Fe corrosion during biocatalytic denitrification, reducing surface passivation and sulfur species leaching from S-nZVI. As a result, S-nZVI exhibited a higher synergistic factor (fsyn = 2.43) for biocatalytic NO3- removal than nanoscale zero-valent iron (nZVI, fsyn = 0.65) at an initial nitrate concentration of 25 mg L-1-N. Based on kinetic profiles, SO42- was the preferred electron acceptor over NO3- when using C. necator and S-nZVI for biocatalytic denitrification. Up-flow column experiments demonstrated that biocatalytic denitrification using S-nZVI achieved a total nitrogen removal capacity of up to 2004 mg L-1 for 127 d. Notably, microbiome taxonomic profiling showed that the addition of S-nZVI to the groundwater promoted the growth of Geobacter, Desulfosporosinus, Streptomyces, and Simplicispira spp in the column experiments. Most of those microbes can reduce sulfate, promote denitrification, and match the batch kinetic profile obtained using C. necator. Our results not only discover the great potential of S-nZVI as a biocatalyst for enhancing denitrification via microbial activation but also provide a deep understanding of the complicated abiotic-biotic interaction.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro , Desnitrificação , Nitratos , Bactérias , Nitrogênio
15.
Environ Sci Technol ; 46(14): 7844-8, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22703119

RESUMO

A biosensor based on sulfur-oxidizing bacteria (SOB) for detection of toxic chemicals in water was developed. SOB are acidophilic microorganisms that get their energy through the oxidation of reduced sulfur compounds in the presence of oxygen to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The bioassay is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. The effect of different physical factors such as HRT, inorganic sulfur (S°) particle size, and temperature on detection of Cr(6+) was studied. The detection of Cr(6+) (50 ppb) was improved by decreasing the hydraulic retention time (HRT) from 30 to 10 min and increasing S° particle size from 1 to 4.75 mm. Detection time was shorter at 30 °C compared to 45 °C and the SOB were active over a wide range of temperatures with a maximum temperature for growth at 45 °C. This novel biosensor is simple, highly sensitive to low Cr(6+) concentrations (50 ppb), and also minimizes detection time. The present findings can be applied to the proper continuous screening of water ecosystem toxicity.


Assuntos
Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Cromo/análise , Enxofre/metabolismo , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Oxirredução , Tamanho da Partícula , Temperatura , Fatores de Tempo
16.
Biotechnol Lett ; 34(10): 1833-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22674064

RESUMO

Stacking of microbial fuel cells (MFC) by connecting multiple small-sized units in a series is used for generating higher power from the MFCs. However, voltage reversal is a critical problem in a serially connected MFC unit. The voltage reversal often occurs when substrate concentration is relatively low in the anodic compartment. Two rectangular individual cells were stacked together in series: MFC1 was fed with 1 g glucose L(-1) throughout the experiment while MFC2 was fed with various concentrations of glucose (0.1, 0.2, 0.3, 0.5 and 0.8 g L(-1)). Voltage reversal occurred when the stack configuration was performed using (1 + 0.1) g glucose L(-1). The stacked configurations with (1 + 0.2, 1 + 0.3, 1 + 0.5 and 1 + 0.8) g glucose L(-1) were operated successfully without the voltage reversal. The maximum powers of 1.88, 2.04, 3.6, 2.5 and 2.18 mW were obtained with the stacked configurations of (1 + 0.2), (1 + 0.3), (1 + 0.5), (1 + 0.8) and (1 + 1) g glucose L(-1), respectively. Except in the stacked configuration with (1 + 0.1) g glucose L(-1), the stacked voltages obtained were similar.


Assuntos
Fontes de Energia Bioelétrica , Meios de Cultura/química , Meios de Cultura/metabolismo , Eletricidade , Desenho de Equipamento , Glucose/metabolismo
17.
Bioprocess Biosyst Eng ; 35(7): 1157-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22367527

RESUMO

The spatial distribution and activities of nitrifying and denitrifying bacteria in sponge media were investigated using diverse tools, because understanding of in situ microbial condition of sponge phase is critical for the successful design and operation of sponge media process. The bacterial consortia within the media was composed of diverse groups including a 14.5% Nitrosomonas spp.-like ammonia oxidizing bacteria (AOB), 12.5% Nitrobacter spp.-like nitrite oxidizing bacteria (NOB), 2.0% anaerobic ammonium-oxidizing (ANAMMOX) bacteria and 71.0% other bacteria. The biofilm appeared to be most dense in the relatively outer region of the media and gradually decreased with depth, but bacterial viabilities showed space-independent feature. The fluorescent in situ hybridization results revealed that AOB and NOB co-existed in similar quantities on the side fragments of the media, which was reasonably supported by the microelectrode measurements showing the concomitant oxidation of NH(4) (+) and production of NO(3) (-) in this zone. However, a significantly higher fraction of AOB was observed in the center than side fragment. As with the overall biofilm density profile, the denitrifying bacteria were also more abundant on the side than in the center fragments. ANAMMOX bacteria detected throughout the entire depth offer another advantage for the removal of nitrogen by simultaneously converting NH(4) (+) and NO(2) (-) to nitrogen gas.


Assuntos
Compostos de Amônio/metabolismo , Biofilmes , Desnitrificação , Nitrificação , Nitrobacter/metabolismo , Nitrosomonas/metabolismo , Anaerobiose , Sequência de Bases , Primers do DNA , Hibridização in Situ Fluorescente , Microeletrodos , Nitrobacter/genética , Nitrosomonas/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
J Environ Manage ; 106: 110-2, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22647672

RESUMO

Toxicity testing is becoming a useful tool for environmental risk assessment. A biosensor based on the metabolic properties of sulfur-oxidizing bacteria (SOB) has been applied for the detection of toxic chemicals in water. The methodology exploits the ability of SOB to oxidize elemental sulfur to sulfuric acid under aerobic conditions. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. Five hours after Cr(6+) was added to the SOB biosensor operated in semi-continuous mode (1 min rapid feeding and 29 min batch reaction), a decrease in effluent EC and an increase in pH (from 2-3 to 6) were detected due to Cr(6+) toxicity to SOB. The SOB biosensor is simple; it can detect toxic levels of Cr(6+) on the order of minutes to hours, a useful time scale for early warning detection systems designed to protect the environment from further degradation.


Assuntos
Técnicas Biossensoriais/métodos , Cromo/análise , Poluentes Químicos da Água/análise , Bactérias/metabolismo , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Oxirredução , Enxofre/metabolismo , Fatores de Tempo
19.
Environ Technol ; 33(10-12): 1271-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22856299

RESUMO

A pilot-scale municipal wastewater treatment plant composed of a fixed film activated sludge (IFAS) system with sulfur-limestone autotrophic denitrification (SLAD) was operated for a year and the influence of different operational factors was investigated. Nitrification efficiency was found to be above 91% at temperatures above 25 degrees C even at short hydraulic residence times (HRTs), but declined to 51 +/- 2% when the temperature dropped to 22 +/- 3 degrees C. The minimum HRT (HRT(min)) to achieve nitrification efficiency > 90% was found to be 12 h at temperatures above 25 degrees C. Denitrification efficiencies were found to be 89% and 79% at a nitrate loading of 0.36 kg NO3(-)-N m(-3) d(-1) and at 0.18 kg NO3(-)-N m(-3) d(-1), respectively. The minimum empty bed residence time (EBRT) to achieve denitrification efficiency above 80% without methanol addition was 3 h at a nitrate loading rate of 0.27-0.38 kg NO3(-)-N m(-3) d(-1). The amount of nitrate removed as a function of the sulfate formed was found to be 0.188 g NO3(-)-N/g SO4(2-). The nitrate load removed by the biofilter as a function of the alkalinity consumed was found to be very close to the theoretical stoichiometric value. The application of the pilot plant was proven to be feasible and the performance of the SLAD system, especially with respect to the minimum EBRT to achieve denitrification efficiency above 80%, the maximum denitrification rate and performance at temperatures below 10 degrees C. To achieve a nitrification efficiency above 90% in the IFAS system, temperature changes and the minimum HRT were found to be the most influential operational parameters.


Assuntos
Desnitrificação , Nitrificação , Purificação da Água/instrumentação , Processos Autotróficos , Carbonato de Cálcio , Estudos de Viabilidade , Filtração , Nitratos/análise , Projetos Piloto , Esgotos , Sulfatos/análise , Enxofre
20.
BMC Sports Sci Med Rehabil ; 14(1): 207, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476514

RESUMO

BACKGROUND: To verify the hydration effects of oral rehydration solution (ORS) on athletes by comparing the degrees of fluid absorption and plasma volume changes following beverage consumption, including ORS. METHODS: Thirty-one participants visited the testing laboratory 4 times at 1-week intervals to consume 1 L of beverage (e.g., water, ORS, and two sports drinks [SpD]) for 30 min on each visit. The urine output was measured 4 times at 1 h, 2 h, 3 h, and 4 h after beverage consumption. A blood sample was collected 3 times at 1 h, 2 h, and 3 h after beverage consumption. Body weight was measured once in 4 h after beverage consumption. RESULTS: Body weight change was smaller for ORS than for water, SpD1, and SpD2 (p < 0.05). Cumulative urine output in 4 h was lower for ORS, SpD1, and SpD2 than for water (p < 0.05), and it was lower for ORS than for SpD2 (p < 0.05). BHI in 4 h was higher for ORS, SpD1, and SpD2 than for water (p < 0.05), and it was higher for ORS than for SpD2 (p < 0.05). There was no significant difference in PVC for different beverages at all test times, i.e.., 1 h, 2 h, and 3 h. CONCLUSIONS: We evaluated the hydration effects of the consumption of beverages, such as water, SpD, and ORS in athletes. ORS and SpD were more effective than water. A comparison between ORS and SpD showed that the result could vary depending on the type of SpD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA