Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(10): 10D108, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399804

RESUMO

A new technique for gas temperature determination in fusion plasmas based on time- and space-resolved imaging interferometry is presented. The proposed imaging interferometer includes a multi-channel optical fiber bundle, a pair of flat mirrors, collimating lenses, and a fast camera for registration of interferometry fringes. The technique is applied for ion temperature measurements in the Versatile Experiment Spherical Torus (VEST) tokamak located at the Seoul National University. The multi-channel operation regime of the interferometer is studied by simulations. The first experimental two-channel results obtained using the Hα emission line from the VEST plasma edge are presented and analyzed. The mentioned apparatus is suggested to be especially useful for the multi-point time-resolved characterization of the non-repetitive processes in low-temperature regions of fusion plasmas.

2.
Rev Sci Instrum ; 87(11): 11E540, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910347

RESUMO

Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of Hα and Hß radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

3.
Rev Sci Instrum ; 82(6): 063510, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721694

RESUMO

The charge exchange spectroscopy (CES) system on Korea Superconducting Tokamak Advanced Research (KSTAR) was installed last year and had been applied to measure the C VI ion temperature and rotation velocity profiles. The ion temperature and rotation velocity profiles had been estimated from the C VI 5290.5 Å (n = 8-7) charge-exchange spectrum signal measured by a Czerny-Turner type spectrometer and a thinned back-illuminated charge coupled device (CCD) camera. However, the Czerny-Turner type spectrometer used for the KSTAR CES system showed so low signal to noise ratio for KSTAR plasmas in the 2010 experimental campaign that the time resolution of the CES system had been limited to 100 ms due to the increased exposure time of the attached CCD camera. Then, new two-grating spectrometer had been developed in order to improve the time resolution of the CES system. The spectrometer consists of two gratings (1200 g/mm and 1800 g/mm each) with additive configuration, concave mirrors (f = 50 cm), and a cylindrical lens (f = 50 cm). The time resolution of the CES system increases by a factor of 2-4 with the two-grating spectrometer. The C VI ion temperature and rotation velocity profiles obtained by the two-grating spectrometer are compared to those by Czerny-Turner type spectrometer in this paper.

5.
Rev Sci Instrum ; 81(1): 013102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20113076

RESUMO

A new method based on time resolved optical absorption spectroscopy is proposed to determine the velocity distribution function of sputtered Cu atoms in a magnetron plasma discharge. The method consists of applying a short pulse of 1.5 micros and of recording time variations in copper atom density in off pulse at different positions (1, 2, and 3 cm) from target surface under 3-30 mTorr. The time evolution of the density is then converted into velocity distribution. We estimate that only sputtered atoms with radial velocity component lower than 0.5 km/s are detected. The average velocity of Cu atoms is evaluated as the first order moment of the velocity distribution functions. The velocity distribution functions become the more dispersive the farther from target surface. The average velocities vary in the range of 2.5-3 km/s at the vicinity of target surface whereas at 3 cm a decrease from 2.5 to 1.2 km/s is observed at 30 mTorr.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA