Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO Rep ; 25(1): 254-285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177910

RESUMO

Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Pluripotentes Induzidas , Humanos , Neurônios Dopaminérgicos/metabolismo , Multiômica , Mesencéfalo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
2.
BMC Infect Dis ; 24(1): 179, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336649

RESUMO

BACKGROUND: During the COVID-19 pandemic swift implementation of research cohorts was key. While many studies focused exclusively on infected individuals, population based cohorts are essential for the follow-up of SARS-CoV-2 impact on public health. Here we present the CON-VINCE cohort, estimate the point and period prevalence of the SARS-CoV-2 infection, reflect on the spread within the Luxembourgish population, examine immune responses to SARS-CoV-2 infection and vaccination, and ascertain the impact of the pandemic on population psychological wellbeing at a nationwide level. METHODS: A representative sample of the adult Luxembourgish population was enrolled. The cohort was followed-up for twelve months. SARS-CoV-2 RT-qPCR and serology were conducted at each sampling visit. The surveys included detailed epidemiological, clinical, socio-economic, and psychological data. RESULTS: One thousand eight hundred sixty-five individuals were followed over seven visits (April 2020-June 2021) with the final weighted period prevalence of SARS-CoV-2 infection of 15%. The participants had similar risks of being infected regardless of their gender, age, employment status and education level. Vaccination increased the chances of IgG-S positivity in infected individuals. Depression, anxiety, loneliness and stress levels increased at a point of study when there were strict containment measures, returning to baseline afterwards. CONCLUSION: The data collected in CON-VINCE study allowed obtaining insights into the infection spread in Luxembourg, immunity build-up and the impact of the pandemic on psychological wellbeing of the population. Moreover, the study holds great translational potential, as samples stored at the biobank, together with self-reported questionnaire information, can be exploited in further research. TRIAL REGISTRATION: Trial registration number: NCT04379297, 10 April 2020.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Luxemburgo/epidemiologia , Ansiedade/epidemiologia
3.
Mov Disord ; 37(7): 1405-1415, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460111

RESUMO

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES: We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS: We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS: Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS: Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
DNA Mitocondrial , Doença de Parkinson , Ubiquitina-Proteína Ligases , DNA Mitocondrial/genética , Humanos , Inflamação/genética , Lipopolissacarídeos/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
4.
J Neural Transm (Vienna) ; 127(5): 729-748, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248367

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder caused by a complex interplay of genetic and environmental factors. For the stratification of PD patients and the development of advanced clinical trials, including causative treatments, a better understanding of the underlying genetic architecture of PD is required. Despite substantial efforts, genome-wide association studies have not been able to explain most of the observed heritability. The majority of PD-associated genetic variants are located in non-coding regions of the genome. A systematic assessment of their functional role is hampered by our incomplete understanding of genotype-phenotype correlations, for example through differential regulation of gene expression. Here, the recent progress and remaining challenges for the elucidation of the role of non-coding genetic variants is reviewed with a focus on PD as a complex disease with multifactorial origins. The function of gene regulatory elements and the impact of non-coding variants on them, and the means to map these elements on a genome-wide level, will be delineated. Moreover, examples of how the integration of functional genomic annotations can serve to identify disease-associated pathways and to prioritize disease- and cell type-specific regulatory variants will be given. Finally, strategies for functional validation and considerations for suitable model systems are outlined. Together this emphasizes the contribution of rare and common genetic variants to the complex pathogenesis of PD and points to remaining challenges for the dissection of genetic complexity that may allow for better stratification, improved diagnostics and more targeted treatments for PD in the future.


Assuntos
Predisposição Genética para Doença/genética , Doença de Parkinson/genética , Humanos
5.
Development ; 143(9): 1464-74, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26965370

RESUMO

In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells.


Assuntos
Larva/citologia , Neurônios Motores/citologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/citologia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/citologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Dexametasona/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunossupressores/farmacologia , Larva/genética , Macrófagos/imunologia , Metronidazol/farmacologia , Microglia/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Oligodendroglia/citologia , Fator de Transcrição PAX2/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
J Neurosci ; 32(13): 4426-39, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22457492

RESUMO

The C-type lectin chondrolectin (chodl) represents one of the major gene products dysregulated in spinal muscular atrophy models in mice. However, to date, no function has been determined for the gene. We have identified chodl and other novel genes potentially involved in motor axon differentiation, by expression profiling of transgenically labeled motor neurons in embryonic zebrafish. To enrich the profile for genes involved in differentiation of peripheral motor axons, we inhibited the function of LIM-HDs (LIM homeodomain factors) by overexpression of a dominant-negative cofactor, thereby rendering labeled axons unable to grow out of the spinal cord. Importantly, labeled cells still exhibited axon growth and most cells retained markers of motor neuron identity. Functional tests of chodl, by overexpression and knockdown, confirm crucial functions of this gene for motor axon growth in vivo. Indeed, knockdown of chodl induces arrest or stalling of motor axon growth at the horizontal myoseptum, an intermediate target and navigational choice point, and reduced muscle innervation at later developmental stages. This phenotype is rescued by chodl overexpression, suggesting that correct expression levels of chodl are important for interactions of growth cones of motor axons with the horizontal myoseptum. Combined, these results identify upstream regulators and downstream functions of chodl during motor axon growth.


Assuntos
Axônios/fisiologia , Cones de Crescimento/fisiologia , Lectinas Tipo C/fisiologia , Neurônios Motores/fisiologia , Animais , Animais Geneticamente Modificados , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes/métodos , Proteínas com Homeodomínio LIM/antagonistas & inibidores , Proteínas com Homeodomínio LIM/genética , Lectinas Tipo C/genética , Masculino , Neurônios Motores/citologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Epigenetics Chromatin ; 14(1): 43, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503558

RESUMO

BACKGROUND: Cell types in ventral midbrain are involved in diseases with variable genetic susceptibility, such as Parkinson's disease and schizophrenia. Many genetic variants affect regulatory regions and alter gene expression in a cell-type-specific manner depending on the chromatin structure and accessibility. RESULTS: We report 20,658 single-nuclei chromatin accessibility profiles of ventral midbrain from two genetically and phenotypically distinct mouse strains. We distinguish ten cell types based on chromatin profiles and analysis of accessible regions controlling cell identity genes highlights cell-type-specific key transcription factors. Regulatory variation segregating the mouse strains manifests more on transcriptome than chromatin level. However, cell-type-level data reveals changes not captured at tissue level. To discover the scope and cell-type specificity of cis-acting variation in midbrain gene expression, we identify putative regulatory variants and show them to be enriched at differentially expressed loci. Finally, we find TCF7L2 to mediate trans-acting variation selectively in midbrain neurons. CONCLUSIONS: Our data set provides an extensive resource to study gene regulation in mesencephalon and provides insights into control of cell identity in the midbrain and identifies cell-type-specific regulatory variation possibly underlying phenotypic and behavioural differences between mouse strains.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Cromatina/genética , Mesencéfalo/metabolismo , Camundongos , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
8.
Sci Rep ; 11(1): 21946, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754035

RESUMO

Parkinson's disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the alpha-synuclein protein causing an autosomal-dominant form of PD. There are limited studies assessing pathogenic SNCA mutations in patient-derived isogenic cell models. Here we provide a functional assessment of dopaminergic neurons derived from a patient harbouring the p.A30P SNCA mutation. Using two clonal gene-corrected isogenic cell lines we identified image-based phenotypes showing impaired neuritic processes. The pathological neurons displayed impaired neuronal activity, reduced mitochondrial respiration, an energy deficit, vulnerability to rotenone, and transcriptional alterations in lipid metabolism. Our data describes for the first time the mutation-only effect of the p.A30P SNCA mutation on neuronal function, supporting the use of isogenic cell lines in identifying image-based pathological phenotypes that can serve as an entry point for future disease-modifying compound screenings and drug discovery strategies.


Assuntos
Neurônios Dopaminérgicos/citologia , Mutação , Doença de Parkinson/patologia , alfa-Sinucleína/genética , Linhagem Celular , Neurônios Dopaminérgicos/metabolismo , Humanos , Mitocôndrias , Doença de Parkinson/genética
9.
Cell Rep ; 37(3): 109864, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686322

RESUMO

Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.


Assuntos
Encéfalo/enzimologia , Fator I de Transcrição COUP/metabolismo , Neurônios Dopaminérgicos/enzimologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Células-Tronco Neurais/enzimologia , Neurogênese , Doença de Parkinson/enzimologia , Animais , Encéfalo/patologia , Fator I de Transcrição COUP/genética , Ciclo Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Mutação , Células-Tronco Neurais/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fenótipo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Fatores de Tempo
10.
Nat Commun ; 11(1): 3033, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561830

RESUMO

Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating opioid receptors, currently classified into four subtypes. Here we demonstrate that ACKR3/CXCR7, hitherto known as an atypical scavenger receptor for chemokines, is a broad-spectrum scavenger of opioid peptides. Phylogenetically, ACKR3 is intermediate between chemokine and opioid receptors and is present in various brain regions together with classical opioid receptors. Functionally, ACKR3 is a scavenger receptor for a wide variety of opioid peptides, especially enkephalins and dynorphins, reducing their availability for the classical opioid receptors. ACKR3 is not modulated by prescription opioids, but we show that an ACKR3-selective subnanomolar competitor peptide, LIH383, can restrain ACKR3's negative regulatory function on opioid peptides in rat brain and potentiate their activity towards classical receptors, which may open alternative therapeutic avenues for opioid-related disorders. Altogether, our results reveal that ACKR3 is an atypical opioid receptor with cross-family ligand selectivity.


Assuntos
Peptídeos Opioides/química , Receptores CXCR/metabolismo , Analgésicos Opioides/química , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sistema Nervoso Central/efeitos dos fármacos , Quimiocinas/metabolismo , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Masculino , Fosforilação , Ratos , Ratos Wistar , Transdução de Sinais , Relação Estrutura-Atividade , beta-Arrestina 1/metabolismo
11.
Dev Cell ; 25(5): 478-91, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23707737

RESUMO

Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Dopamina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/citologia , Regeneração , Animais , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Interneurônios/metabolismo , Microscopia de Fluorescência , Mutação , Transdução de Sinais , Medula Espinal/citologia , Células-Tronco/citologia , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA