Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transgenic Res ; 21(2): 367-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21853296

RESUMO

Gamma linolenic acid (GLA; C18:3Δ6,9,12 cis), also known as γ-Linolenic acid, is an important essential fatty acid precursor for the synthesis of very long chain polyunsaturated fatty acids and important pathways involved in human health. GLA is synthesized from linoleic acid (LA; C18:2Δ9,12 cis) by endoplasmic reticulum associated Δ6-desaturase activity. Currently sources of GLA are limited to a small number of plant species with poor agronomic properties, and therefore an economical and abundant commercial source of GLA in an existing crop is highly desirable. To this end, the seed oil of a high LA cultivated species of safflower (Carthamus tinctorius) was modified by transformation with Δ6-desaturase from Saprolegnia diclina resulting in levels exceeding 70% (v/v) of GLA. Levels around 50% (v/v) of GLA in seed oil was achieved when Δ12-/Δ6-desaturases from Mortierella alpina was over-expressed in safflower cultivars with either a high LA or high oleic (OA; C18:1Δ9 cis) background. The differences in the overall levels of GLA suggest the accumulation of the novel fatty acid was not limited by a lack of incorporation into the triacylgylcerol backbone (>66% GLA achieved), or correlated with gene dosage (GLA levels independent of gene copy number), but rather reflected the differences in Δ6-desaturase activity from the two sources. To date, these represent the highest accumulation levels of a newly introduced fatty acid in a transgenic crop. Events from these studies have been propagated and recently received FDA approval for commercialization as Sonova™400.


Assuntos
Carthamus tinctorius/metabolismo , Linoleoil-CoA Desaturase/genética , Saprolegnia/enzimologia , Sementes/metabolismo , Ácido gama-Linolênico/biossíntese , Agrobacterium/genética , Agrobacterium/metabolismo , Carthamus tinctorius/genética , Fracionamento Químico/métodos , Meios de Cultura/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Linoleoil-CoA Desaturase/metabolismo , Ácido Oleico/metabolismo , Fenótipo , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saprolegnia/genética , Sementes/genética
2.
Sex Plant Reprod ; 24(4): 307-17, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21573927

RESUMO

In safflower, the anther wall at maturity consists of a single epidermis, an endothecium, a middle layer and the tapetum. The tapetum consists mainly of a single layer of cells. However, this single-layer appearance is punctuated by loci having 'two-celled' groupings due to additional periclinal divisions in some tapetal cells. Meiotic division in microsporocytes gives rise to tetrads of microspores. The primexine is formed around the protoplasts of microspores while they are still enveloped within the callose wall. Just prior to microgametogenesis, the microspores enlarge through the process of vacuolation, and the exine wall pattern becomes established. Microgametogenesis results in the formation of 3-celled pollen grains. The two elongated sperm cells appear to be connected. The exine wall is highly sculptured with a distinct tectum, columellae, a foot layer, an endexine and a thin intine. Similar to other members of the Asteraceae family, the tapetum is of the invasive type. The most novel finding of this study is that in addition to the presence of invasive tapetal cells, a small population of 'non-invasive' tapetal cells is also present. The tapetal cells next to the anther locules in direct contact with the microspores become invasive and start to grow into the space between developing microspores. These tapetal cells synthesize tryphine and eventually degenerate at the time of gametogenesis releasing their content into the anther locules. A smaller population of non-invasive tapetal cells is formed as a result of periclinal divisions at the time of tapetum differentiation. These cells are not exposed to the anther locules until the degeneration of the invasive tapetal cells. The non-invasive tapetal cells have a different cell fate as they synthesize pollenkitt. This material is responsible for allowing some pollen grains to adhere to each other and to the anther wall after anther dehiscence. This observation explains the out-crossing ability of Carthamus species and varieties in nature.


Assuntos
Carthamus tinctorius/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Gametogênese , Pólen/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA